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Abstract 

 

MODELING ENERGY SAVINGS OF GLAZED AND UNGLAZED COLLECTORS FOR 

SPACE HEATING, WATER HEATING, AND SPACE COOLING 

 

Brad Painting 

B.S., Ohio University 

M.S., Appalachian State University 

 

 

Chairperson:  Jeffrey Tiller 

 

 

 Glazed and unglazed solar thermal collectors were compared in TRNSYS simulations 

for a multi-use application of space heating, water heating, and space cooling. The solar 

thermal system added or removed heat from two separate storage tanks that provided hot or 

cold water to a slab-on-grade radiant floor system within an 1800 ft2 house. The system 

collected heat using traditional solar absorption and removed heat using night-sky radiative 

cooling. The overall solar fraction achieved by two (7.6 m2) of the glazed collectors was 

similar to the solar fraction achieved by six (22.8 m2) of the unglazed collectors in the 

climates of Raleigh, NC, Jacksonville, FL, and Albuquerque, NM. However, the unglazed 

collectors produced less energy cost savings at these sizes because a greater proportion of 

their energy was provided as cooling, which was supplied more efficiently by auxiliary 

equipment. For each type of collector, the greatest solar fraction of space heating and water 

heating were achieved in Jacksonville, and the greatest solar fraction of space cooling was 

achieved in Albuquerque. The climate of Raleigh generally produced heating and cooling 

performances that were in the middle of the range produced by collectors in the three 
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geographic regions. For glazed and unglazed arrays of equal size in Raleigh (15.2 m2), the 

ratio of the unglazed solar fraction to the glazed solar fraction was 0.26 for space heating, 

0.73 for water heating, and 2.71 for space cooling. 
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Chapter One: Introduction 
 

There are a variety of systems that can use solar energy to heat or cool buildings. One of the 

major types used for heating is the solar thermal collector. Collectors designed for the medium-

temperature range typically have a glass or polycarbonate cover (or “glazing”) intended to trap heat. 

Unglazed collectors, without said cover, are typically used for low-temperature applications such as 

pool-heating at a lower financial cost. According to Burch, Salasovich, and Hillman (2005), unglazed 

collectors typically cost one-fifth the price of equally sized glazed collectors, but collect only about 

one half to two-thirds as much heat annually when used for domestic hot water (DHW) heating at an 

array size of 40 ft2 (3.72 m2). However, the absence of glazing allows the collectors to also cool a 

working fluid if operated at night by means of night-sky radiative cooling, expanding their potential 

utility. 

The combined functions of heating and cooling have been underexplored as a viable 

economic investment in renewable energy. Burch, Christensen, Salasovich, and Thornton (2004) 

performed a simulation for three different climate zones for combined heating and cooling of a 185 

m2 home using unglazed collectors to power a hydronic forced air system. In Albuquerque, NM, the 

collectors saved 56% of the energy that would have been required without any collectors present. 

Forced air systems represent just one method of utilizing the combined heating and cooling 

potential of unglazed collectors. Radiant floors, ceilings, or wall panels may be more compatible with 

the fluid temperatures achieved within solar collectors than forced-air systems. This is especially true 

in systems that actively store energy within the thermal mass of the building (often called thermo-

active building systems [TABS]). For example, Olesen (2012) presented a review of TABS which 

demonstrated that a supply water temperature of only 18º C circulating through such a system can 

offset 38 W/m2 of heat gain to a space. He also noted that TABS should allow solar collectors to 

operate more efficiently. 
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A system model was created and analyzed using TRNSYS. The purpose of the simulation 

was to compare the performance of glazed and unglazed thermal collectors in a radiant space heating 

system. The design utilizes a thermally active floor consisting of cross-linked polyethylene tubing 

(PEX) running through a slab-on-grade foundation. Two separate storage tanks, consisting of hot or 

cold water charged by the solar collectors, service the radiant floor as it is used for heating or cooling. 

A heat pump in series with the tanks, located immediately prior to the inlet of the radiant floor loop, 

supplies auxiliary heating and cooling energy. See Chapter Three for further details on the model. 

Statement of Problem 

Few studies have been performed on the use of solar thermal collectors for the combined 

functions of heating and night-sky radiative cooling. Burch et al. (2004) investigated the energy 

savings from using unglazed collectors for space heating, space cooling, and domestic hot water 

heating. They established that unglazed collectors can make significant contributions to both heating 

and cooling needs, but it remains to be established whether the total energy cost savings can justify 

switching from the more traditional choice of using glazed collectors for domestic hot water and/or 

space heating. Moreover, their method of conditioning the house (i.e., with forced air systems) is not 

an ideal fit for solar thermal collectors because it demands higher fluid temperatures for heating and 

lower fluid temperatures for cooling than well-designed radiant systems (see Siegenthaler, 2013). The 

comparison is further complicated by the substantially lower cost of unglazed collectors, noted by 

Burch et al. (2005) to be about 20% of the cost of glazed collectors per unit area. There is a need for a 

study that compares the performance of both types of collectors within the context of both heating 

and cooling in order to inform an economic analysis. 

Significance of Study 

The advancement of solar thermal technology is widely researched for its potential financial 

and environmental benefits. Solar thermal systems may make buildings more affordable by 

decreasing energy costs needed to meet heating needs (and in some cases, cooling needs). As building 

envelopes become better sealed and insulated, they have greater cooling needs relative to heating 
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needs. This creates a strong argument for increased focus on energy-efficient methods of space 

cooling. The resulting decrease in traditional energy consumption also decreases the environmental 

impacts.  

Unglazed collectors are a cheaper, simpler, technology than glazed collectors. If the energy 

savings from unglazed collectors employed for both heating and cooling is favorable to the savings 

from glazed collectors, it may encourage greater adoption of solar thermal technology and further 

research into unglazed collector functions. 

Purpose of Study 

This study used TRNSYS models to compare the performance of unglazed collectors used for 

the dual functions of heating and cooling to glazed collectors, which have superior heating 

performance but inferior ability to radiate heat for cooling. A cost savings analysis was then 

performed for each type. Energy and cost savings were investigated specifically for residential 

buildings with cooling loads in regions that could likely utilize slab-on-grade radiant floor systems, 

represented by Jacksonville, FL, Albuquerque, NM, and Raleigh, NC. 

Research Goals 

The goal of this research was to compare the energy and cost savings potential of using 

glazed collectors to unglazed collectors in residential buildings that require space heating, space 

cooling, and domestic hot water heating. This investigation was applied to the following questions 

within the context of three different climates in the U.S.: 

1) How much energy is saved in space heating for each type of collector (i.e., glazed and 

unglazed) when compared to a radiant floor system with no solar assistance? 

2) How much energy is saved in domestic water heating for each type of collector (i.e., 

glazed and unglazed) compared to a tankless water heater with no solar assistance? 

3) How much energy is saved in space cooling for each type of collector (i.e., glazed and 

unglazed) when compared to a radiant floor system with no solar assistance? 
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4) What are the comparative savings on energy bills of unglazed and glazed thermal 

collector systems? 

Limitations of the Study 

The performance of the HVAC system will change when used with different buildings or in 

different climates. The results are sensitive to the properties of the building such as wall and ceiling 

R-Values, glazing properties, shading characteristics, and internal gains. The performance of the 

unglazed collectors may vary more between climates than is typically expected for glazed collectors 

due to their greater sensitivity to wind speed and ambient temperature. There are also likely 

differences between system costs that use glazed collectors and system costs that use unglazed 

collectors, and their comparative energy cost savings do not necessarily reflect the total comparative 

economic return. 

The collector models available in the distributed package all had limitations. Each unglazed 

collector model had an issue with processing either wind speed or sky temperature. However, a 

reasonable workaround was developed for the collector model that contained no wind speed input. 

There was also a lack of glazed collector models that are able to model night-sky radiative cooling 

over the full range of possible temperatures, but a reasonable workaround was also developed for this. 

Details on these solutions are provided in the Methodology section. 

Assumptions Made 

A number of assumptions had to be made throughout the study in order to eventually analyze 

energy cost savings. Various assumptions were made about the occupants in terms of their schedules, 

thermal comfort needs, and hot water consumption in order to calculate energy requirements. Various 

assumptions were made about the building and solar thermal system parameters to help create a 

complete design. An electrical rate was assumed to calculate cost savings. Assumptions were also 

made about weather properties; for example, that the diffuse sky radiation is isotropic (see Definition 

of Terms), and that wind speed in residential areas is 50% of the wind speed measured in TMY2 files.  
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In rare cases, it may be possible for solar collectors to replace a system entirely when the 

output is high enough in comparison to the demand. It was assumed that this would not occur because 

solar thermal collectors generally operate least efficiently when the demand is the highest, as seen 

from the analysis by Burch et al. (2004). In other words, on the coldest winter days, collectors will 

produce little heat. 

Definition of Terms 

Absorptance – The fraction of incident radiation that is absorbed by a surface (rather than 

being reflected or transmitted). 

ACH – An abbreviation for “air changes per hour” that describes the rate at which the air in a 

house is replaced with fresh air. 

Aperture Area – Area of the collector face excluding the frame; the area through which solar 

radiation can actually enter the collector. 

Azimuth angle – The angle between due south and the projection on a horizontal plane of the 

line between the sun and the receiving surface of its beam radiation. 

Beam Radiation – irradiance that has not been scattered by the earth’s atmosphere (traveling 

in a roughly straight line from the sun to the source). 

Diffuse Radiation – irradiance that has been scattered by the earth’s atmosphere (as is 

received behind a shaded surface). 

Dry Bulb Temperature – The air temperature measured by a thermometer when there is a net-

zero radiative flux between the thermometer and surrounding surfaces. 

Emissivity – The fraction of thermal radiation that an object will emit at a given temperature 

in comparison to how much it would emit if it had perfect emissivity. 

Gross Area – Area of the collector face, including the frame. 

Heat Removal Factor – The effectiveness of the collector as a heat exchanger, defined as the 

ratio of the actual heat transfer to the potential heat transfer if the entire collector were at the inlet 

fluid temperature. 
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Isotropic – refers to diffuse radiation that is evenly distributed among all orientations. 

Mean Radiant Temperature – the temperature perceived by an object based solely on its 

incident radiation, excluding air temperature effects. 

Operative Temperature – A measure of thermal comfort that combines the influence of air 

dry bulb temperature and mean radiant temperature. 

R-Value – the thermal resistance for a given thickness of material. 

Solar Heat Gain Coefficient – the fraction of solar radiation that will pass through a window. 

Thermal Capacity – The amount of energy required to raise a unit mass of a material by one 

unit of temperature measurement. Also known as specific heat. 

TMY2 and TMY3 – refers to Typical Meteorological Year data representing compiled 

empirical weather data that characterizes weather patterns for a given location. Commonly used in 

building and renewable energy modeling situations.    

Transmittance – the proportion of radiation that passes through a surface (without being 

absorbed by it). 

U-Value – the thermal conductivity for a given thickness of material; the inverse of R-Value.  

View Factor – The proportion of radiation emitted by a first surface that strikes a second 

surface. 

Units of Measurement 

The units of measurement appearing in the literature are mixed between the International 

System (SI) and the US Customary system (IP). Unit labels are frequently omitted from R-Value and 

U-Value when working within a single system, but because the literature is from various sources it is 

important to list the units of each system and the conversion factors between them. 

Heat-related conversions: 

1 𝑘𝑊ℎ = 3412.14 𝐵𝑡𝑢   (𝐸𝑛𝑒𝑟𝑔𝑦) 

1 𝑊 = 3.412
𝐵𝑡𝑢

ℎ𝑟
   (𝑃𝑜𝑤𝑒𝑟) 
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1
𝑊

𝑚𝐾
= 0.578

𝐵𝑡𝑢

ℎ𝑟. 𝑓𝑡°𝐹
   (𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦) 

1
𝑊

𝑚2𝐾
= 0.176 

𝐵𝑡𝑢

ℎ𝑟. 𝑓𝑡2°𝐹
   (𝑈 − 𝑉𝑎𝑙𝑢𝑒) 

1
𝑚2𝐾

𝑊
= 5.678 

ℎ𝑟. 𝑓𝑡2°𝐹

𝐵𝑡𝑢
   (𝑅 − 𝑣𝑎𝑙𝑢𝑒) 

Dimension conversions: 

1 𝑚 = 3.28 𝑓 

1 𝑚2 = 10.76 𝑓𝑡2 

Flow conversions: 

1
𝑘𝑔

𝑠
= 2.20

𝑙𝑏𝑚

𝑠
 

1
𝑘𝑔

𝑠
= 15.87 𝑔𝑝𝑚   (𝑓𝑜𝑟 𝑤𝑎𝑡𝑒𝑟 𝑜𝑛𝑙𝑦) 

 

  



8 

 

 

 

 

Chapter Two: Review of Literature 
 

Collectors 

History 

According to the Florida Solar Energy Center (FSEC) (2006), the first solar water heaters 

appeared in the 1800s as unglazed collectors in the form of bare metal tanks, painted black and tilted 

towards the sun. Ragheb (2014) described another application developed in 1885 by the French 

engineer Charles Tellier, who developed an unglazed collector that heated ammonia to run a turbine 

used to drive a pump. Its form was somewhat similar to modern unglazed collectors used to heat 

water, consisting of a watertight seal between iron sheets that served as a channel for the heated fluid. 

Approximately four years later, he added glass glazing and insulation to improve its 

efficiency. The FSEC (2006) described the invention of traditional glazed collectors as a separate 

endeavor by Clarence Kemp in 1891. Kemp evolved the traditional bare metal tanks into a 

commercially-available glazed collector marketed as the “Climax,” which utilized black galvanized 

iron tanks placed inside a glass-covered box. The storage tanks were first separated from the 

collectors in 1909 by inventor William Bailey, giving rise to the modern flat-plate collector, which 

exists today in both glazed and unglazed forms. Currently, unglazed collectors are most commonly 

used for pool heating while glazed collectors are more commonly used for DHW heating and space 

heating. 

Current Applications in Space Conditioning 

Energie Solaire, based in Switzerland, distributes a product called the Solar Roof, which is an 

unglazed collector that integrates into the roof structure, marketed for low-temperature applications, 

for example, providing heat to the evaporator of a heat pump to improve its efficiency (Energy 
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Solaire, 2015). There are also transpired collectors (i.e., air-based collectors) on the market used for 

heating and cooling fresh air drawn into buildings (Conserval Engineering, Inc., 2015). 

Radiative Cooling 

Anderson, Duke, and Carson (2013) developed a theoretical model for the cooling capacity of 

unglazed collectors on a per-unit-area basis and tested it against experimental results. The collector 

was integrated into a troughed sheet metal roof having an emissivity of 0.95 and absorber 

conductivity of 50 W/m-K. They verified the experimental model by measuring collector parameters 

such as temperature and flow rate coupled with environmental parameters such as irradiance, wind 

speed, ambient temperature, and cloud cover. They continuously circulated water through the 

collector from a 60-liter storage tank over 24 hours to compare the ambient temperature to the tank 

temperature. Unsurprisingly, the tank became much warmer than the ambient temperature during the 

day. However, during nighttime hours, the tank temperature dropped (by about 3 ºC) below ambient 

temperature. This corresponds to a cooling output of 50 W/m2 during late night hours. Their 

theoretical model predicted typical nighttime stagnation temperatures of 5 ºC to 10 ºC below air 

temperature in several Australian cities. Because their experimental setup consisted of a single tank 

exposed to both heating and cooling conditions over a 24 hour period, it may not represent the 

maximum cooling potential of the collectors. 

Sima, Sikula, Kosutova, and Plasek (2013) investigated night sky radiative cooling in the 

Czech Republic using roof-mounted radiating panels connected to concrete ceiling panels. They 

simply assumed cloudy sky conditions rather than using the dynamic parameter of sky cover from a 

TMY2 or TMY3 weather file. Rather than coupling the collectors directly to an Active Layer 

representing the chilled ceiling in TRNSYS, they created a new thermal zone to represent the chilled 

ceiling and used results from seven different steady-state simulations of the collectors in the software 

package, Fluent, to modify the temperature of the imaginary thermal zone representing concrete 

ceiling panels. The frequencies of operative temperatures and thermal comfort were compared to a 

simulation of a building without any form of cooling. Over the course of three summer months, the 
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operative temperature without any cooling ranged from approximately 30 °C to 40 °C. With radiative 

cooling, it ranged from approximately 19 °C to 30 °C. These temperature ranges were used to inform 

their thermal comfort model, which estimated that less than 15% of people would be dissatisfied 

during 70% of the working time when all cooling was produced by the radiating panels. 

Eicker and Dalibard (2011) simulated and measured the performance of unglazed 

photovoltaic-thermal (PVT) panels used for night-sky radiative cooling. The panels were used to 

remove heat from either a phase change material (PCM) in the ceiling, a thermally massive floor, or a 

heat sink (storage tank), depending on the prioritization. The simulation was performed in both 

Madrid and Shanghai representing low and high humidity climates, respectively. Humidity had a 

large effect on the cooling capacity of the panels; annually they were able to remove 9.7 kWh/m2 

from the PCM in Madrid with an average cooling power of 30.7 W/m2, but only 3.5 kWh/m2 in 

Shanghai with an average cooling power of 22.5 W/m2.  

Domestic Water Heating 

Burch et al. (2005) compared the energy cost savings of unglazed collectors to glazed 

collectors for use in domestic water heating using TRNSYS simulations. They found that for a 40 ft2 

(3.72 m2) collector area, the glazed collectors with selective coating performed at an average 

efficiency of about 38% ± 1% over one year while the unglazed collectors performed at an average 

21% ± 1% annual efficiency. Efficiencies were found to be “reasonably constant” (p. 3) across the 

United States as long as the load volume and system size were consistent. The unglazed collectors 

produced most of their useful heat at combinations of higher ambient temperature and irradiance 

compared to glazed collectors. Specifically, unglazed collectors harvested the most energy over the 

course of a year at a (Ti - Tamb)/Isun of approximately 0.2 °C.m2/W while glazed collectors harvested 

the most energy at approximately 0.4 °C.m2/W, where Ti is the inlet water temperature, Tamb is the 

ambient temperature, and Isun is the intensity of solar irradiance. It is possible that the annual 

efficiency of collectors could improve if used for low-temperature space heating in addition to 

medium-temperature water heating. 
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Combined DHW Heating and Space Heating 

Bonhôte (2009) simulated the performance of unglazed thermal collectors integrated into an 

office building facade for space heating and domestic water heating. The simulation was performed 

using weather data from Zurich, Switzerland; Stockholm, Sweden; and Carpentras, France. Various 

collector parameters such as absorptance, emissivity, and orientation were varied to investigate heat 

output under different design conditions. Space heating and DHW heating were simulated separately 

and then in combination. The space heating system consisted of a boiler that supplied water at a 

maximum temperature of 38 °C to a heat exchanger connected to separate radiators in the north and 

south zones of the building. The boiler also serviced the DHW tank through a heat exchanger in the 

DHW simulation, in which the boiler set point was 80 °C. The simulations showed that the collectors 

saved 100 to 300 kWh/m2-year when used for domestic water heating but only 20 to 100 kWh/m2-

year when used for space heating. In combination, 95% of the collected energy went to DHW heating. 

Results of this simulation may not be representative due to different equipment configurations and 

temperature set points. 

Combined Heating and Cooling 

Baer (2001) designed a system to heat and cool a building using unglazed collectors. The 

design used an unconventional heat transfer medium of ceiling-mounted PVC pipes filled with water. 

The system was tested as a small physical mockup rather than a simulation of a realistic building, and 

the measurements of the heating response were only taken over the course of a few days. The results 

showed that indoor temperatures (6 feet above the floor) stayed between 60 °F and 87 °F as outdoor 

temperatures fluctuated between 24 °F and 65 °F. 

Burch et al. (2004) simulated a system that utilized unglazed collectors to charge separate hot 

and cold water tanks, which each serviced either a hot water coil or cold water coil within a forced air 

system. Domestic hot water was also drawn from the hot water tank. They simulated the performance 

in TRNSYS using three different collector areas (of 6 m2, 23 m2, or 93 m2) in the climates of 

Albuquerque, Madison, and Miami. Auxiliary space heating was performed by a separate system 
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coupled directly to the zone to bring the air temperature to 20º C, while a chiller was run in series 

with the cold water tank to bring the water temperature down to 12.8° C before reaching the cooling 

coils. A tankless water heater was placed in series with the hot water tank to achieve a DHW 

temperature of 55º C. The 185 m2 building model contained R3.35 (SI) / R19 (IP) stud frame walls, 

an R5.28 (SI) / R30 (IP) ceiling, and a concrete slab floor with R1.75 (SI) / R10 (IP) perimeter 

insulation. The building’s footprint was square, with windows placed uniformly across all facades. In 

Albuquerque, the total energy savings (on heating, cooling, and DHW heating) for a 23 m2 collector 

area were 56%. The savings for Madison and Miami at the 23 m2 collector area were 36% and 31%, 

respectively. They found that collector performance is highly sensitive to wind speed for heating but 

generally insensitive to wind conditions for cooling 

Variation of Performance with Tilt 

The collector array simulated in the system by Burch et al. (2004) was 30 degrees, assumed 

to be flush with the roof. Marion and Wilcox (n.d.) stated that maximum annual insolation can be 

captured by using a tilt angle approximately equal to the location latitude. However, as Baer (2001) 

pointed out, increasing the tilt angle will decrease the cooling capacity due to less “view” of the sky 

from the collector face. It is accepted that there are aesthetic objections to arrays that are not flush 

with the roof surface, so the experimental design used in this study did not deviate from this 

constraint proposed by Burch et al. (2004) in their simulation. 

Variation of Performance with Wind Conditions 

Burch and Casey (2009) noted that the Solar Rating Certification Council’s (SRCC) ratings 

have been biased in favor of unglazed collectors because, at the time of the published article, the 

SRCC had been testing glazed collectors according to American Society of Refrigeration and Air 

Conditioning Engineers (ASHRAE) Standard 93, which specifies wind speeds of 5 to 10 mph, but 

unglazed collectors under ASHRAE Standard 96, which specifies wind speeds below 3 mph. 

Although they stated that wind effects were “mostly negligible” (p. 1) for glazed collectors, they 

showed that even the range of wind velocities allowed within ASHRAE 96 can approximately halve 
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the efficiency of unglazed collectors tested in no-wind conditions. The International Organization of 

Standardization (ISO) 9806 Standard, which the SRCC transitioned towards at the time of the article, 

provides collector efficiencies as a function of both (Ti - Tamb)/Isun and wind speed; therefore, it is 

preferable to analyze unglazed collectors rated according to this criterion. 

The efficiency of unglazed collectors may also vary with wind turbulence, which may differ 

between test sites and sites of actual installation. Intelligent Energy Europe (2012), under the auspices 

of the European Commission, stated that artificial wind generators tend to produce more turbulent 

wind than air flowing naturally over a collector array at the same speed, which creates greater heat 

loss. However, International Standards Organization (ISO) 9806 stipulates that the wind produced by 

generators must be tested and confirmed to fall in the range of 20% to 40% turbulence to simulate 

natural wind conditions. 

Variation of Performance with Mounting Method 

ISO 9806 states that the thermal performance of collectors is affected by the method of 

mounting and specifies standard test configurations. Generally, it is stated that “…an open mounting 

structure shall be used which allows air to circulate freely around the front and back of the collector” 

(p. 33). However, a subsection on unglazed collectors states “If mounting instructions are not 

specified, the collector shall be mounted on an insulated backing with a quotient of the materials 

thermal conductivity to its thickness of 1 W/(m2·K) ± 0,3 W/(m2·K)…” (p. 33) and suggests 3 cm of 

polystyrene foam as an example. 

The International Energy Agency (1993) described an equation developed by Svendsen 

(1985) that accounts for convective and radiative losses from the back of an unglazed, rack-mounted 

collector: 

𝑞𝑢 = 𝛼𝐺𝑇 − ℎ𝑐,𝑝−𝑎(𝑇𝑝𝑚 − 𝑇𝑎) − 𝜀𝑝𝜎 ∗ (𝑇𝑝𝑚
4 − 𝑇𝑒

4) − ℎ𝑐,𝑏−𝑎(𝑇𝑏𝑚 − 𝑇𝑎) − 𝜀𝑏𝑔𝜎(𝑇𝑏𝑚
4 − 𝑇𝑔

4) 

The convective and radiative losses from the back are: 

ℎ𝑐,𝑏−𝑎(𝑇𝑏𝑚 − 𝑇𝑎) and 𝜀𝑏𝑔𝜎(𝑇𝑏𝑚
4 − 𝑇𝑔

4), 
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respectively. If the back of the collector is mounted flush with a roof or otherwise insulated from the 

air, it seems logical that these terms would be affected and that the performance of the installed 

collector may differ from the tested performance. 

Variation of Performance with Incidence Angle 

The maximum efficiency of glazed solar collectors are known to vary with the angle of 

incidence between incoming irradiance and the collector aperture, and this is accounted for in 

collector ratings by incidence angle modifiers (IAMs). However, a review of studies by the 

International Energy Agency (1993) concluded that the efficiency of unglazed collectors is not 

sensitive to the incidence angle. 

Variation of Performance with Flow Rate 

The SRCC (Solar Rating and Certification Council [SRCC], 2015a) certifies all collectors 

under ASHRAE-recommended flow rates (unless a model is specifically designed to operate under a 

different flow rate). ASHRAE Standard 96-1980 recommends testing methods for unglazed collectors 

and specifies a flow rate of 0.07 kg/s.m2, while ASHRAE Standard 93-1986 provides recommended 

test procedures for glazed collectors (and other types) and suggests a flow rate of 0.02 kg/s.m2. It 

warns that performance ratings are only valid at the tested flow rates. 

TRNSYS 

Overview 

TRNSYS is a software package that is able to simulate a wide variety of dynamic processes, 

but is especially well-suited to those described in terms of heat and energy (TESS, 2015). TRNSYS 

consists of a core engine, or kernel, that performs mathematical operations and a set of components 

representing physical phenomena that communicate with the kernel. Both the kernel and the 

components are written in Fortran. The types of components are diverse and range from items as 

simple as a fluid pipe to systems as complex as a commercial building. Each component is defined by 

its source code and three types of attributes: inputs, parameters, and outputs. An input is a variable of 

a component that may change at any point in time, such as the flow rate through a collector. Inputs 
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are most commonly defined by the output of another component in the simulation, but they may also 

be held constant or dynamically modified based on user-defined equations. Functionally, a parameter 

is simply an input that must be held constant over time; for example, a parameter of most solar 

thermal collector components is the array area. An output is generated by the component’s source 

code and may be plotted, saved into a text file, or routed to other components as an input. The entire 

model serves as an input to the TRNSYS kernel as a “deck” file, which is developed and visualized 

through the graphical interface of Simulation Studio. Simulation Studio displays the connections 

between inputs and outputs as well as each component’s settings in table format. It is the graphical 

interface shown in schematics throughout this document, such as in Figure 1. 

Utility 

Sousa (2012) compared the features of TRNSYS with other software packages that were 

considered “among the most complete” (p. 9) simulation tools: Energy Plus, ESP-r, IDA ICE, and 

IES. He concluded that TRNSYS was the most complete tool of the group. A key feature described is 

the ability to incorporate custom routines and mathematical models into the simulation. 

Accuracy 

Burch, Huggins, Wood, and Thornton (1993) compared physical measurements on drainback 

systems to TRNSYS simulation results and found that the root mean square deviation between 

measured and simulated auxiliary energy used was 3%, with a maximum of 8% deviation. Ayompe 

(2011) compared TRNSYS simulation results to measurements of an experimental flat plate collector 

system. The error of TRNSYS relative to the measurements was 16.9% for the amount of heat 

absorbed by the collectors but only 6.9% for the amount of heat delivered to the load. 

Building Loads 

Internal Heat Gains 

It is important to accurately estimate the building’s internal heat gains because larger internal 

gains can shift energy consumption away from heating and towards cooling. This is especially true 

for energy-efficient buildings; Firlag and Zawada (2013) estimated about 20% of the heat lost from a 
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standard building can be recovered by internal gains, but up to 65% can be recovered in a “passive 

house” (p. 372). Huang, Hanford, and Fuqiang (1999), under the auspices of Lawrence Berkeley 

National Laboratory, stated that cooling loads in old buildings are evenly split “between the roof, 

walls, infiltration, solar gains, and internal gains,” but that in new buildings solar gains and internal 

gains account for two-thirds of the cooling load. In their analysis of internal gains in a passive house 

in Germany, Firlag and Zawada (2013) estimated total average internal sensible heat gains of 623 W 

for a 120.1 m2 living space, or about 5.2 W/m2. Elsland, Peksen, and Wietschel (2014) created a 

model of predicted internal heat gains for various countries across Europe, accounting for appliances, 

electronics, lighting, and people and their behavioral patterns. The estimated range was an average 

internal gain of 3.8 to 6.6 W/m2, depending on the country.  

DHW Consumption Models 

Edwards, Beausoleil-Morrison, and Laperrière (2015) measured the hot water consumption of 

73 homes in Canada over the course of 60 to 165 days per house. The mean daily consumption was 

189 liters (49.93 gallons), but the standard deviation was considerable, at 83 liters (21.93 gallons). 

The conditions used by the SRCC and the U.S. Department of Energy for rating water heaters 

assumes a draw of 64.3 gallons per day divided into six different intervals, each at a draw rate of 3.0 

gallons per minute (SRCC,  2015b). 

Radiant Floor Systems 

Affordability 

A literature review performed by the University of California at Berkeley’s Center for the 

Built Environment (Moore, Bauman, & Huizenga, 2006) found that radiant cooling systems can be 

competitive with forced-air systems in up-front costs, and can achieve energy savings from 17% to 

42% over all-air, variable-air-volume (VAV) systems in cool, humid climates and hot, dry climates, 

respectively. The article mentions a case study of buildings in Germany with four different types of 

radiant cooling systems that suggested that slab systems have both the lowest first cost and lowest life 

cycle cost. 
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Thermal Comfort 

It is necessary to review thermal comfort parameters to determine what floor temperatures 

will be acceptable to occupants during heating and cooling seasons. ASHRAE Standard 55 provides 

guidance on how the parameters of air temperature, mean radiant temperature, air speed, humidity, 

occupant activity, and clothing level combine to determine acceptable comfort ranges (Brandemuehl, 

2005). The CBE Thermal Comfort Tool (Hoyt, Schiavon, Piccioli, Dustin, and Steinfeld, 2013) 

automates the prediction of thermal comfort levels using the methods and parameters of ASHRAE 

Standard 55. 

To assess the effect of floor temperature on thermal comfort, assumptions must be made 

about other thermal comfort parameters. Because the building has no forced air system, the mean air 

speed is likely lower than what might be expected in a house that does use forced air (Betz, 2014). 

Occupants are assumed to be standing and relaxed with clothing levels appropriate to the seasons: 

 Internal Air speed = 0.04 m/s 

 Metabolic Rate = 1.2 met (represents standing, relaxed) 

 Heating Season Clothing = 1.0 (represents typical winter clothing, indoor) 

 Cooling Season Clothing = 0.5 (represents typical summer clothing, indoor) 

 Humidity = 50% 

Olesen (2002) stated that for a person sitting in a 6 m by 6 m room in a commercial building, 

the floor temperature will only make up 40% of the overall mean radiant temperature. If other 

surfaces are assumed to be equal to air temperature, thermal comfort level can be assessed for some 

potential floor surface temperature set points. For example, during heating season at an indoor air 

temperature of 20 °C and floor surface temperature of 25 °C, the mean radiant temperature becomes 

22 °C and conditions are in compliance with ASHRAE Standard 55. During cooling season with an 

indoor air temperature of 27 °C and a floor surface temperature of 23 °C, the mean radiant 

temperature becomes 25.4 ° and the conditions are also in compliance. This review is used, in 
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conjunction with estimated heat transfer coefficients described in section Modeling Procedures, as a 

starting point for testing different floor surface temperature set points in TRNSYS. 

Heat Transfer Coefficients 

The Radiant Cooling Design Manual by Uponor (2013) provides an estimated heat transfer 

coefficient of 11 W/m2.K for radiant floor heating and 7 W/m2.K for radiant floor cooling. Therefore, 

for a 24° C floor surface adjacent to 20 °C air, the rate of heat transfer would be 44 W/m2. This is 

similar to a figure provided by Olesen (2002): For a floor surface temperature of 23.9 °C and air 

temperature of 20 °C, the estimated heat flux is 40 W/m2. 

Thermal Storage Capacity  

Some of the thermal energy from the collectors can be stored directly in the floor system. The 

storage capacity is a function of its specific heat, thickness, area, and allowable temperature range. 

The allowable temperature range is considered to be the difference between the temperature set point 

when using solar thermal energy and the temperature at which auxiliary energy must be used. The 

parameters are as follows: 

 Specific Heat: 0.96 kJ/kg-K 

 Thickness: 0.12 m (4.72 inches) 

 Area: 167.23 m2 

 Heating Season Range: 23 °C to 25 °C 

 Cooling Season Range: 21 °C to 23 °C 

These parameters define the thermal storage capacity, Q = m*C*∆T, where Q is thermal 

storage capacity, m is mass, C is specific heat, and T is the allowable slab temperature range. The 

equation provides the thermal capacity of the floor without being recharged by the collector array. 

This equates to about 102,300 kJ of storage within the floor. In contrast, a 0.3 m3 (79.2 gallon) tank of 

water heated 30 °C above its set point only provides 37,700 kJ of heat storage. 
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Concrete Thermal Lag 

VanGeem, Fiorato, and Musser (1982) tested the time lag between a temperature stimulus on 

one side of a concrete wall and its resultant response on the opposite side for three different concrete 

densities, each with an approximate thickness of 8.25’’ to 8.5’’. The high, medium, and low concrete 

densities produced thermal lags of 4 hours, 5.5 hours, and 8 hours, respectively. The different 

densities also affected the R-Values of the concrete, with the low-density having higher R-Value. 
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Chapter Three: System Design 
 

Overview 

A model of an energy-efficient house was designed and implemented in TRNSYS. The 

model used the most stringent set of criteria for ENERGY STAR certification among the locations 

simulated (Raleigh, NC; Jacksonville, FL, and Albuquerque, NM). Key features were a 0.12 m (4.72 

in.) slab-on-grade foundation with insulation underneath and around its perimeter, a low R-Value 

floor finish, a square single-story floor plan, a 30º pitched roof, and evenly distributed windows with 

overhangs along the south-facing windows. 

The house model was heated and cooled by three different types of heating systems. The 

control case was a radiant floor system heated and cooled only by an air-to-water heat pump with 

domestic hot water heated by a tankless water heater. The second case contained unglazed collectors 

servicing hot and cold water storage tanks. Each tank was plumbed to an air-to-water heat pump that 

provided auxiliary heating (or cooling) to the fluid stream before entering the radiant floor system. A 

tankless water heater also provided auxiliary heating to water drawn from the hot storage tank to meet 

DHW demand. The third case was similar, only with glazed collectors. 

The concrete slab, in all cases, had PEX tubing embedded at 0.06 m (2.36 in.) depth per the 

recommendation of Siegenthaler (2013). The solar collectors were mounted on the south face of the 

roof and connected to hot and cold storage tanks. The flow from the collectors ran through a 

controlled diverter valve to charge the appropriate tank based on the mode of operation. The PEX 

tubing also carried flow through a diverter valve outside of the radiant slab to direct flow through a 

heat exchanger within either the hot or cold tank. However, heating and cooling were modeled in 

separate simulation in TRNSYS due to problems with integrating all elements into a single model. 
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Solar Collector System Design 

The system contained two controllers as illustrated in Figure 1: one to control heating and 

cooling of the floor system, and a second to regulate flow between the tanks and solar collectors. The 

floor temperature controller sent output signals (i.e., “on” or “off”) to both the hydraulic pump and 

the auxiliary heat pump. When the water in the storage tanks was hot or cold enough to meet space 

conditioning demands, the controller simply signaled the hydraulic pump to circulate fluid from the 

appropriate tank through the floor. When the circulating fluid was not sufficiently hot or cold to meet 

demands, the controller also signaled the auxiliary heat pump to turn on. When auxiliary energy was 

required, the controller used a slightly lower set point in heating mode and a higher set point in 

cooling mode in order to utilize as much “free” energy from the tanks as possible. These set points are 

outlined in the description of System Design under “Controls and Set Points.” The control of the 

tankless water heater was internal to the component and turned on when the DHW stream was less 

than 50 ºC. 
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Figure 1. Simplified schematic of controllers in TRNSYS. Dotted lines represent controller readings 

and signals. Bold lines represent hydraulic flow. Cold storage not shown. 

 

Collector Definition 

The SRCC (2015c) describes collectors according to equations generated from tests 

performed under ASHRAE or ISO standards. The glazed collector equation depends on solar 

radiation and ambient temperature, while the unglazed collector equation utilizes these inputs with the 

addition of wind speed. The variables used in the SRCC performance curves are defined in Table 1, 

and are used throughout this document. 

Table 1. ISO Equation Variables 

Symbol Meaning Unit 

u Wind Speed m/s 

P Ti - Ta °C 

Ti Collector Inlet Temperature °C 

Ta Ambient Temperature °C 

G Radiation W/m2 
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A Rheem RS40-BP glazed flat plate collector is defined by the ISO equation for a flow rate 

of 0.02 kg/s.m2: 

𝜂 = 0.718 − 2.29060 (
𝑃

𝐺
) − 0.04398(

𝑃2

𝐺
) 

A Fafco Sungrabber unglazed flat plate collector is defined according to the ISO equation 

under a tested flow rate of 0.07 kg/s.m2: 

𝜂 = 0.941(1 − 0.0412𝑢) − (11.6348 + 5.0697𝑢)(
𝑃

𝐺
) 

The TRNSYS component types used to model the provided equations are Type 539 for the 

glazed collector and Type 553 for the unglazed collector. 

Thermal capacitance. 

The SRCC (2015c) also provides measurements that help determine the thermal capacitance 

of a collector. The thermal capacitance affects how quickly it responds to changing ambient 

conditions. TRNSYS assumes that the thermal capacitance parameter includes the capacitance of the 

contained fluid (in addition to the collector materials themselves). Although the glazed collector is 

made from heavier materials, SRCC data show it has a lower fluid capacity of 1.26 L/m2, versus 2.87 

L/m2 for the unglazed collector. The total capacitance of the glazed collector was estimated from an 

example provided by Goswami, Kreith, and Kreider (2000, p. 109) by considering the ratio of 

collector areas; it is approximately 29.45 kJ/K for a 3.8 m2 collector. The capacitance of the unglazed 

collector was estimated by assuming the primary material is propylene and adding the known 

capacitance of the contained fluid; it is 34.88 kJ/K for a 2.27 m2 collector. 

Incidence angle modifiers. 

The amount of irradiance being absorbed by a collector is known to vary with the angle at 

which the sun enters the aperture. For glazed collectors, less irradiance is absorbed as the angle 

increases. For unglazed collectors, there is negligible difference. The SRCC (2015c) provides 

incidence angle modifiers (IAM) in terms of a table of values from 10° to 70°. TRNSYS, however 

requires IAMS to be defined in terms of an equation at an incidence angle of θ: 
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𝐼𝐴𝑀 = 1 − 𝑏0 (
1

cos 𝜃
− 1) − 𝑏1 (

1

cos 𝜃
− 1)

2

 

The IAM equation was fit to the SRCC IAM values using Excel’s Solver function to 

determine the coefficients b0 and b1 (resulting in b0 = 0.038 and b1 = 0.14). The resulting values 

described in Table 2 replicate the Rheem RS40-BP values fairly closely. 

Table 2. Incidence Angle Modifier Comparison between SRCC Values and Equation-Based Values 

Angle (θ) in Degrees SRCC Provided Value Equation Best-Fit Value 

10 1 0.96 

20 0.98 0.96 

30 0.96 0.95 

40 0.91 0.95 

50 0.84 0.92 

60 0.71 0.82 

70 0.44 0.44 

 

DHW Consumption 

DHW consumption was assumed equal in all climates, but the loads varied slightly because 

of different mains water temperatures. The occupant’s draw on the water was modeled using a Type 

14b forcing function according to a specified schedule to accumulate a total of 64 gallons per day of 

hot water usage. The step function of Type 14b (shown in Figure 2) can become truncated or distorted 

by the length of the TRNSYS time step, so the draw rate was chosen to add up to 64 gallons when 

divided into one-hour blocks. This flow rate worked out to 0.53 GPM (121.3 kg/hr).  
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Figure 2. Hot water draw schedule using TRNSYS Type 14b. 

 

 

Tank Definition 

Two tanks of equal design (except for differences in number and locations of ports) were 

modeled for hot and cold storage. Each tank was a vertical stratified cylindrical storage tank with an 

internal heat exchanger coil. The heat exchanger was assumed to be copper. Tank dimensions were 

acquired from specification sheets for a line of solar water tanks (DudaDiesel), and heat loss 

coefficients were estimated from a survey of heat losses from 19 vertical solar DHW tanks by Furbo 

(2004). The TRNSYS component selected was Type 534-Coiled for reasons discussed in the 

Modeling Procedures section. 

The parameters for the hot and cold storage tank were similar but differed mainly by the 

specified locations of inlets and outlets (for reasons also discussed in the Modeling Procedures 

section). Each tank had at least one set of ports in addition to the heat exchanger for the circulation of 

the tank fluid through the radiant floor system. Additionally, the hot storage tank had a second set of 
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ports that was used for providing domestic hot water and replacing it with fresh water from the mains. 

The tank properties are defined in Table 3. 

Table 3. Tank Properties 

Parameter Value 

Heat Loss Coefficient (W/m2.K): 0.525 

Tank Storage Fluid: Water-Glycol Mixture 

Fluid Thermal Conductivity (W/m.K): 0.6 

Fluid Dynamic Viscosity (N.s/m2): 0.001002 

Fluid Thermal Expansion Coefficient (1/K): 0.000214 

Number of Nodes: 5 

Supply to Radiant Floor: 
Hot Tank: Node 1 (Top) 

Cold Tank: Node 5 (Bottom) 

Return from Radiant Floor: 
Hot Tank: Node 5 (Bottom) 

Cold Tank: Node 1 (Top) 

Heat Exchanger Conductivity (W/m.K): 401 

Heat Exchanger Fluid: 60% Water, 40% Propylene Glycol 

 

The collector fluid, which is a mixture of water and glycol, runs through the tank heat 

exchanger. This fluid has different heat transfer properties than the water stored in the body of the 

tank and had to be specified in the model. The thermal properties of the water-glycol mixture were 

modeled at 20 °C in cooling mode and 40 °C in heating mode, based on product information for a 

water-propylene glycol mixture using DowFrost (DOW Chemical Company, 2001). The properties 

are listed in Table 4. 

Table 4. Properties of 60% Water and 40% Glycol Mixture 

Parameter Heating (40 °C) Cooling (20 °C) 

Specific Heat (kJ/kg.K): 3.70 3.77 

Density (kg/m3): 1036.9 1026.5 

Thermal Conductivity (W/m.K): 0.401 0.415 

Dynamic Viscosity (N.s/m2): 0.0056 0.0023 
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Building Design 

The building was a one-story residential house with a conditioned volume of 407.9 m3. The 

foundation was slab-on-grade with a polished concrete interior floor. General properties that were 

chosen without regard to climate are described in Table 5. Other building properties were chosen to 

qualify under the most stringent set of criteria for ENERGY STAR certification among the 

investigated climates, using guidance from the International Energy Conservation Code (IECC) 

(International Code Council, n.d.). These are described in Table 6. 

Table 5. General Building Parameters 

Parameter Value 

Width (m): 9.14 

Length (m): 18.29 

Height (m): 2.44 

No. of Bedrooms: 3 

Mechanical Ventilation (ACH): 0.4 

Southface Shading: 2 ft overhang 

Average Internal Gains (W/m2) 6 

Lighting Power Density (W/m2) 2.5 

 

Table 6. ENERGY STAR Requirements 

Climate 
Location 

Represented 

Ceiling  

R-Value 

Wood 

Frame  

R-Value 

Slab  

R-Value 

Fenestration  

U-Factor 

Fenestration 

SHGC 

Zone 4 
Raleigh 

Albuquerque 
38 13 

10  

(2 ft deep) 
0.35 N/A 

Zone 2 Jacksonville 30 13 0 0.65 0.3 
 

Overhang Design 

A south-facing overhang was used consistent with basic energy efficient design in order to 

not exaggerate summer cooling loads. Based on the height of the window (1.37 m / 54 inches) and 

distance of the overhang above the top of the window (0.41 m / 16 inches), trigonometric calculations 

showed that a 0.62 m (2 foot) overhang will allow beam radiation to strike the entirety of the window 

face when the sun’s azimuth angle is less than 45° and will shield the entire window face when the 
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angle is greater than 70°. Looking at the sun charts for the inspected climates, included in Appendix 

A, it can be seen that this works well in each location for eliminating beam radiation and excess 

cooling loads in summer while assisting passive solar heating in winter. 

Air Exchange 

For simplicity, all air exchange was modeled as mechanical ventilation to slightly exceed the 

requirements of ASHRAE Standard 62.2. The standard requires 0.03 cubic feet per minute (CFM) of 

ventilation per square foot of floor area plus 7.5 CFM for every occupant in the home. The modeled 

home requires 76.5 CFM, or 129.97 m3/hr, which for a 407.76 m3 living space works out to 0.32 

ACH. Calculations were performed using the Residential Energy Dynamics Tool (Residential Energy 

Dynamics, LLC, 2013). Air exchange was modeled as 0.4 ACH to include potential air leakage. 

Controls and Set Points 

It is impractical to attempt to control air temperature directly because the thermal capacitance 

of the slab is orders of magnitude greater than the enclosed indoor air. However, the air temperature 

will approach the floor surface temperature at a rate proportional to the ∆T between floor and air 

temperatures, and if the floor surface temperature is kept constant, the air temperature will be 

controlled. This worked well under most conditions, but there were sometimes minor fluctuations and 

potential excursions from ideal thermal comfort. Slab surface temperature was held at the following 

set points during the heating season and cooling season, respectively: 

 Heating using tank water: 25 °C 

 Heating using auxiliary heat pump: 23 °C 

 Cooling using tank water: 21 °C 

 Cooling using auxiliary heat pump: 23 °C 

Type 56 Parameters 

The overall building was modeled with a Type 56 component. Type 56 can create multi-zone 

building energy models that are compliant with ASHRAE and LEED energy modeling standards. A 



29 

 

TMY2 weather file was processed by a Type 15 component to calculate meteorological values such 

as ambient temperature, wind speed, and radiation incident on surfaces of various orientations, which 

were inputs to the collector array and Type 56 building. The radiant floor system was defined as an 

“active wall layer” according to the program terminology, which received the inputs of fluid 

temperature and flow rate from the tanks. 

The Type 56 component was created and modified through an ancillary software package 

called TRNBUILD. TRNBUILD provides an interface for defining the physical characteristics of the 

building as well as new inputs and outputs to interact with other components in the simulation. There 

are many variables that can be selected as outputs of a Type 56 component including those related to 

thermal comfort, such as dry bulb temperature; mean radiant temperature; and relative humidity; as 

well as those related to energy balances, such as inside surface temperature; outside surface 

temperature; and rate of radiant heat flux. Heating and cooling equipment was defined by external 

components rather than within the Type 56 component. However, heating and cooling loads can also 

be “artificially” met using the Load Manager, which adds or removes as much latent and sensible heat 

as necessary in order to meet desired set points of the indoor air. The results from the Load Manager 

were used to verify the correct functioning of the radiant floor system and investigate 

dehumidification requirements. 

The building was modeled in TRNSYS as two separate air nodes: an “Attic” node, which 

includes all enclosed space above the ceiling, and a “Zone1” node, which includes the living space. 

An air node is a fundamental element of the building defined by a volume and thermal capacitance 

and characterized by a uniform temperature at any point in time. Each air node is uniquely paired to a 

set of surfaces and has unique specifications for ventilation, internal gains, and HVAC set points. 

Heat balance calculations are performed by TRNSYS according to the building characteristics 

defined for each specific air node. 
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Air Nodes 

Two air nodes were used because the attic and living space are expected to have very 

different temperatures from each other. The accuracy of the simulation could be increased by creating 

multiple air nodes within the living space to model vertical stratification of air temperature, but this 

would increase the model complexity for less incremental benefit than adding the second air node. 

This is because temperature between floor-level and ceiling-level of a single story home should not 

vary as much as between living space and attic. For simplicity and computational expediency, the 

living space was modeled as a single room. The air nodes are described in Table 7. “Coupling air 

flow” indicates the quantity of air leaking between the attic and living space. 

Table 7. Air Node Properties 

Name 
Volume 

(m3) 

Thermal 

Capacitance 

(kJ/K) 

Wall Types Conditioned? 

Coupling Air 

Flow  

(kg/h) 

Attic 220.7 264.85 

Roof (External) 

Gable (External) 

Ceiling (Adjacent) 

No 10 

Zone1 407.76 978.62 

Exterior Wall (External) 

Ground (Boundary) 

Ceiling (Adjacent) 

Yes 10 

 

Orientations 

An “orientation” in TRNSYS is not strictly defined by spatial orientation: Any surface that has a 

unique amount of radiation falling on it is considered a new orientation. The quality of radiation 

incident on each orientation is calculated by the Type 15-2 weather component. Three new 

orientations were defined beyond those provided by default: two to represent the north and south 

faces of the 30° sloped roof and a third to represent the effect of the south façade’s overhang. 

Orientations are summarized in Table 8. 
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Table 8. Defined Building Orientations 

Orientation Name Usage Tilt Azimuth Shading 

N_180_30 North Roof 30° 180° No 

S_0_30 South Roof 30° 0° No 

N_180_90 North Façade 90° 180° No 

SHADS_0_90 South Façade 90° 0° Yes 

E_270_90 East Façade 90° 270° No 

W_90_90 West Facade 90° 90° No 

 

The new roof orientations were added to the Type 15 weather component by adding the roof 

slopes and azimuths to its list of parameters, which creates new outputs to connect to the Type 56 

component. The Type 15 weather component does not directly calculate the south shaded orientation; 

instead, its southward radiation was routed through a Type 34 “Overhang and Wingwall” component 

to the building as shown in Figure 3. 

 
Figure 3. Overhang modeling. 

 

Wall Parameters 

The terminology of TRNSYS describes all elements of the building envelope such as 

ceilings, floors, walls, and roofing as “Walls.” Walls are assembled from layers defined by properties 

of thickness, conductivity, thermal capacitance, density, solar absorptance, and thermal emissivity. 

Throughout the building enclosure, there are sometimes parameters of layers that are not applicable. 
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The solar absorptance is not applicable when a layer is not exposed to sunlight and thermal emissivity 

is not applicable when it is sandwiched in direct contact between other layers. In these cases, those 

parameters are marked “N/A.”  

 Many wall types are pre-defined by existing layers in the TRNSYS libraries, but some 

materials or some of their parameters were not available and were instead retrieved from outside 

sources. Others were modified based on available literature; notably, the density of concrete was 

defined as 1,400 kg/m3, but most sources place conventional concrete closer to 2,400 kg/m3 (as 

outlined in Density of Concrete (Elert, 2001)). 

Roof and ceiling. 

The layers of walls connected to the attic air node are listed below; the roof is defined in 

Table 9, the gable in Table 10, and the ceiling in Table 11. 

 

Table 9. Roof Layer Parameters 

Material 
Thickness 

(m) 

Conductivity 

(kJ/hr.m.K) 

Capacitance 

(kJ/kg.K) 

Density 

(kg/m3) 
Absorptance Emissivity 

PLYWOOD 0.025 0.54 1.2 800 N/A 0.83 

FELT 

MEMBRANE 
.005 0.69 1.67 1121.3 N/A N/A 

ASHPALT 

SHINGLE 
.01 0.223 0.92 2115 0.85 0.9 

 

Table 10. Gable Layer Parameters 

Material 
Thickness 

(m) 

Conductivity 

(kJ/hr.m.K) 

Capacitance 

(kJ/kg.K) 

Density 

(kg/m3) 
Absorptance Emissivity 

PLYWOOD 0.025 0.54 1.2 800 N/A 0.83 

BRICK 0.09 3.2 1.0 1800 0.55 0.93 

 

Table 11. Ceiling Layer Parameters 

Material 
Thickness 

(m) 

Conductivity 

(kJ/hr.m.K) 

Capacitance 

(kJ/kg.K) 

Density 

(kg/m3) 
Absorptance Emissivity 

FIBERGLASS 

QUILT 
0.27 0.144 0.84 12 N/A 0.75 

GYPSUM 0.01 0.756 1 1200 N/A 0.85 



33 

 

 

Exterior walls and windows. 

The exterior wall parameters are provided in Table 12. The exterior walls used discontinuous 

insulation in the form of a 2x4 stud wall cavity filled with mineral wool insulation. However, each 

TRNSYS layer is continuous, so the required thickness of each continuous layer of insulation was 

calculated. The resulting R-Value is 2.46 K.m2/W, or 13.95 hr.ft2.R/Btu. 

 

Table 12. Exterior Wall Layer Parameters 

Material 
Thickness 

(m) 

Conductivity 

(kJ/hr.m.K) 

Capacitance 

(kJ/kg.K) 

Density 

(kg/m3) 
Absorptance Emissivity 

GYPSUM 0.013 0.756 1 1200 0.3 0.85 

ROCKWOOL 0.071 0.126 1.4 25 N/A N/A 

PLYWOOD 0.013 0.054 1.2 800 N/A N/A 

BRICK 0.090 3.2 1 1800 0.55 0.93 

 

Windows were modeled as subcomponents of walls and were chosen from the TRNSYS 

library to meet the ENERGY STAR U-Value and SHGC constraints across all climates. TRNSYS 

defines them by the parameters of solar transmittance, solar reflectance, and visible transmittance. 

The window area within each building face is specified in Table 13 and the properties of each are 

specified in Table 14. Note that ENERGY STAR uses imperial units for U-Value while TRNSYS 

uses SI units, with a conversion factor of 5.678 W/(m2.K) to 1 Btu/(hr.ft2.°F). 

 

Table 13. Window Distribution on Building Faces  

North (m2) South (m2) East (m2) West (m2) 

4.26 4.26 1.42 1.42 

 

Table 14. Window Properties 

Description 
U-Value 

(W/m2.K) 
SHGC 

Solar 

Transmittance 

Solar 

Reflectance 

Visible 

Transmittance 

LowSHGC,Ar, 

silber1.3 38/30 
1.3 0.298 0.226 0.209 0.383 
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Floor system. 

The floor was composed of the layers and parameters listed in Table 15. The PEX tubing was 

represented by the Active Layer, which is described in Table 16. Pipe dimensions and conductivity 

were obtained from manufacturer information for ½’-inch tubing, while spacing was set according to 

guidance in a design manual by Uponor (2013). 

Table 15. Floor Layer Parameters 

Material 
Thickness 

(m) 

Conductivity 

(kJ/hr.m.K) 

Capacitance 

(kJ/kg.K) 

Density 

(kg/m3) 
Absorptance Emissivity 

CONCRETE 

SLAB 
0.06 4.068 1 2400 0.6 0.9 

ACTIVE 

LAYER 
N/A 1.37* N/A N/A N/A N/A 

CONCRETE 

SLAB 
0.06 4.068 1 2400 N/A N/A 

XPS 0.025 0.125 1.214 28.8 N/A N/A 

*Describes the conductivity of the pipe within the active layer. 

 

Table 16. Active Layer Specifications 

Material 
Pipe Outside 

Diameter (m) 

Pipe Wall 

Thickness 

(m) 

Pipe Wall 

Conductivity 

(kJ/hr.m.K) 

Pipe 

Spacing 

(m) 

Number 

of Loops 

Specific Heat of 

Fluid (kJ/kg) 

PEX Tubing 0.015875 0.0018 1.37 0.2 8 4.18 

 

Another important setting was the convective heat transfer coefficient for the top of the floor: 

this was set to “internal calculation,” meaning TRNSYS calculated its value based on the floor and air 

temperatures rather than using a constant value. This was done solely for this surface because the slab 

is the most important location of heat transfer. The convective heat transfer coefficient for the 

underside of the floor was not needed because the floor is a slab-on-grade and does not interact 

directly with air. 

Two new inputs were created for the Active Layer within the Type56 building to simulate the 

storage tanks connected to PEX tubing: “TankFlow” and “TankTemp,” which received the flow rate 

from the tank and the temperature of the fluid stream immediately before entering the floor system. 
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Internal Gains 

Internal gains were assumed to be consistent over each day of the week (except from clothes 

drying) and to come from the following sources: the human body, computers, artificial lighting, 

appliances, and miscellaneous gains from other sources. The usage schedule, sensible heat gain, latent 

heat gain, and equivalent moisture gain (in kg/hr) are provided in Table 17. Usage schedules may be 

more regular than typical activity, but being equivalent for both glazed and unglazed collectors, likely 

had negligible effect on this comparative study. 

Table 17. Internal Gain Schedule 

Type of Internal 

Gain 
Times of Gain 

Sensible Heat 

Gain  
Latent Heat Gain 

Equivalent 

Moisture Gain 

W kJ/hr W kJ/hr kg/hr 

Human Body 

(per person) 
5:30 PM to 8:00 AM 60 216 40 144 .06 

Computers & 

Electronics 
7:00 PM to 9:00 PM 280 1,008 0 0 0 

Lighting 
7:00 AM to 8:00 AM, 

5:00 PM to 10:00 PM 
418 1,505 0 0 0 

Cooking 
7:00 AM to 7:15 AM, 

5:30 PM to 6:00 PM 
1,125 4,050 375 1,350 0.6 

Clothes Drying 
1:00 PM to 3:00 PM 

(Sunday Only) 
1,000 3,600 0 0 0 

Washing 

Machine 

11:00 AM to 1:00 PM 

(Sunday Only) 
200 800 0 0 0 

Dishwasher 

11:00 PM to 12:00 

AM 

(Tuesday and 

Thursday) 

1200 4,320 200 720 0.17 

Miscellaneous Constant 520 1,872 0 0 0 
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Chapter Four: Modeling Procedures 
 

A parametric analysis was performed to investigate the effects of tank size and collector array 

size on energy savings. Energy savings were found to vary little with tank size and a constant value 

was selected to allow for more direct comparison between different collector arrays. The simulation 

was performed in each chosen climate zone for each type of system at a number of different array 

sizes sufficient to reveal trends in the data. Outputs collected from the model included energy 

consumption by the auxiliary heat pump (in both heating and cooling modes) and energy 

consumption by the tankless DHW heater. The difference in energy and energy cost savings between 

glazed and unglazed collectors was calculated for each location. 

Energy savings are displayed as graphs showing space heating, space cooling, and domestic 

water heating savings in each month for each climate. The total energy cost savings from glazed and 

unglazed collectors are also displayed in graphical and tabular format. The performance of the 

building, tank, and collector were investigated to make sure they performed realistically. Modeling 

procedures that were used to inform system design are also described here. 

Floor System 

Ground Coupling 

The foundation is slab-on-grade, but the recommended procedure for accurately modeling 

coupling to ground temperature in TRNSYS is relatively complex. It requires modeling the building 

in Google Sketchup (Solar Energy Laboratory, 2009b) and greatly increases simulation run time, 

often taking up to several hours per simulated year (D. Bradley, personal communication, October 15, 

2015). As a simplification, the below-slab ground temperature was estimated based on the ground 

temperature (outside of the building foundation) and typical indoor air temperature. The influence on 

heat loss from the underside of the slab was investigated based on two different hypothetical 

formulas: 
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𝑇𝑏𝑒𝑙𝑜𝑤 = (𝑇𝑖𝑛𝑑𝑜𝑜𝑟 + 𝑇𝑔𝑟𝑜𝑢𝑛𝑑)/2      (ℎ𝑖𝑔ℎ 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) 

𝑇𝑏𝑒𝑙𝑜𝑤 = (3 ∗ 𝑇𝑖𝑛𝑑𝑜𝑜𝑟 + 𝑇𝑔𝑟𝑜𝑢𝑛𝑑)/4      (𝑙𝑜𝑤 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) 

The temperature used for Tindoor is 23 °C, and Tground was estimated from mains water 

temperature, which seems to work well as a proxy for ground temperature according to a soil 

temperature map. The TRNSYS Type 15 weather component does not produce an actual ground 

temperature output. The validity of each model was assessed by comparing the results of TRNSYS 

simulations with experimental results in the literature. 

Chuangchid and Krarti (2001) compared a numerical model for concrete slab heat loss to an 

existing set of experimental measurements for a 4-inch thick heated slab with 2-foot deep perimeter 

insulation (and no continuous insulation below slab). When the outdoor air temperature was 30 °F 

(16.7 °C) lower than indoor temperature and the system was in steady-state, approximately 30% of 

the heat input to the slab was lost out of the bottom and edges.  

A TRNSYS simulation was performed in Raleigh and Albuquerque for the month of 

February, for which the average differences between indoor and outdoor temperatures are 17 °C and 

18 °C, respectively. The slab was heated to a constant 23 °C using an inlet water temperature of 29 °C 

and the amount of heat input to the slab was compared to the amount of heat lost through its bottom. 

Edge losses were not modeled and therefore all heat loss was accounted for through the bottom of the 

slab. The heat losses using each hypothetical model for below-slab temperature are shown in Figure 

4. 

At a high ground influence the simulation in the study comparing glazed and unglazed 

collectors agreed well with the experiment, showing about 31% heat loss through the underside of the 

slab. However, the simulated slab had 0.05 m of continuous insulation and should lose less heat than 

the experimental slab with only perimeter insulation.  
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Figure 4. Percentage of heat loss through underside of slab using two different hypothetical formulas.

 

Chuangchid and Krarti (2001) also provided monthly estimates for the amount of heat lost 

through a slab with different levels of insulation. In February, a slab with “partial insulation” 

(understood to mean perimeter insulation) loses 60 W/m, but for continuous insulation at an R-Value 

of 2.0 m2C/W the slab loses about 40 W/m. The estimated R-Value of the insulation in the simulation 

is 1.45 m2C/W. Based on these figures, the rate of slab heat loss was attenuated to equal slightly more 

than 2/3 of the high ground-influence simulation. The formula representing low ground-influence 

produced heat loss rates that were (100% - 17% / 31%) = 45% lower in Raleigh and (100% – 20% / 

31%) = 35% lower in Albuquerque than those produced by the formula representing high ground-

influence. Therefore, a compromise between the formulas was chosen: 

𝑇𝑏𝑒𝑙𝑜𝑤 = (2 ∗ 𝑇𝑖𝑛𝑑𝑜𝑜𝑟 + 𝑇𝑔𝑟𝑜𝑢𝑛𝑑)/3 

 

Thermal Lag 

The radiant system cannot respond immediately to loads because there is a lag between the 

time at which heat flows into the center of the slab and when it conducts to the surface. This time lag 

was investigated by removing all dynamic loads to the slab, varying the heat transfer fluid 

temperature at one point in time, and observing the slab surface temperature over time. All weather-
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related inputs to the slab (or indirectly to the slab via the building walls) were set to zero, except for 

ambient temperature and the slab boundary condition, which were set to a constant 20 °C. 

Under the simulated conditions, there was a large time lag for both heating and cooling 

response, taking about four hours for the slab surface temperature to approach about 50% of the 

difference between its initial temperature and its final temperature (using an inlet fluid temperature of 

29 °C). However, the time lag is not an issue if the floor temperature is controlled to stay within an 

acceptable range. The thermal time lag is shown in Figure 5. 

Inspection of a Raleigh TMY2 file showed that the coldest daily temperature, and therefore 

the highest demand, often occurs in early morning close to sunrise. A nighttime temperature setback 

was considered but decided against because the slab’s thermal inertia may make it impractical to have 

the setback period immediately adjacent to the time of peak demand. 
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Figure 5. Floor surface temperature response during heating. 

 

Determining Heat Transfer Fluid Set Points for Space Conditioning 

The fluid set point temperatures for the radiant floor were chosen to maintain the floor 

surface-to-air temperature differential at the minimum practical value required to meet space heating 

and cooling loads. The Type 56 component requires the flow rate through to be high for turbulent 

flow. At these flow rates, the rate of heat transfer through the floor is not extremely sensitive to flow 

rate; varying the flow rate between 2,000 kg/hr and 20,000 kg/hr resulted in visually identical indoor 

temperature profiles. A flow of 2,000 kg/hr was selected. 

It was decided to use the same fluid temperature set points in each climate. Inspection of the 

hourly building loads showed that the highest instantaneous heating load occurred in Raleigh (at a 

total of 4.32 kW) and the highest instantaneous sensible cooling load occurred in Albuquerque (at 
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3.47 kW). The floor temperature was controlled to prevent the indoor air from dropping below 21 °C 

during heating and from rising above 26 °C during cooling. Based on estimated heat transfer 

coefficients from Uponor (2013) of 11 W/m2.K for radiant floor heating and 7 W/m2.K for radiant 

floor cooling, the required floor temperature was calculated in order to be effective in each mode of 

space conditioning (Figure 6). 

 
Figure 6. Maximum instantaneous heating and cooling load experienced in different climates. 

 

 

The required temperature differentials between floor surface and air turned out to be quite 

small in order to achieve the required heat fluxes. The floor surface must be 2.35 °C above air 

temperature during maximum heating load (or above 23.35 °C) and 2.96 °C below air temperature 

during maximum cooling load (or below 23.04 °C). The fluid temperatures needed to maintain these 

floor surface temperatures were investigated by making adjustments to them in subsequent 

simulations in TRNSYS, and observing their effects on indoor temperatures. Heating and cooling 

were investigated in separate simulations (Figures 7 and 8). 

A fluid temperature of 29 °C worked well for heating in Raleigh. The floor temperature 

stayed above 25 °C (the majority of time) and the indoor air temperature stayed above 21 °C. The 
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upper air temperature was artificially limited to 26 °C using the TRNBLD Load Manager in order to 

investigate heating separately from cooling. 

 
Figure 7. TRNSYS plotting tool showing floor surface temperature during heating season. Floor is 

only active during heating season. Fluctuations during cooling season are caused by passive modes of 

heat transfer (i.e., conduction to ground and convection to air). 
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Figure 8. TRNSYS plotting tool showing indoor air temperature during heating season. The air is 

cooled by the Load Manager if it rises above 26 °C during summer months. 

 

 

A water temperature of 20 °C worked well for cooling in Albuquerque. Figure 9 shows that 

the floor surface stayed below 23 °C, and Figure 10 shows that the indoor air temperature stayed 

below 26 °C. The operative temperature generally stayed below 25 °C, which the thermal comfort 

analysis showed is actually slightly on the cool side when wearing typical summer clothing. In the 

cooling analysis, heating was performed by the Building Load Manager when air temperature 

dropped below 22 °C. 
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Figure 9. TRNSYS plotting tool showing floor surface temperature during cooling season. Floor is 

only active during cooling season. Fluctuations during heating season are caused by passive modes of 

heat transfer (i.e., conduction to ground and convection to air). 
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Figure 10. TRNSYS plotting tool showing indoor air temperature during cooling season. The air is 

heated by the Load Manager if it falls below 22 °C during winter months. 

 

In summary, the fluid temperature set points for the inlet to the radiant floor are 29 °C for 

heating and 20 °C for cooling. 

Tank Modeling 

Considerations 

The storage tank must have a large enough capacity to store the required heat for at least one 

day at a time, but should not be so large that its thermal inertia prohibits the collectors from heating or 

cooling it to usable temperatures. When undisturbed by forced circulation, the fluid will naturally 

stratify along a temperature gradient, modeled by N separate nodes in TRNSYS, with coldest at the 

bottom of the tank to warmest at the top. The heating tank is used most efficiently by delivering water 
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from the top node to the heating load (i.e., the radiant floor or auxiliary water heater) and from the 

bottom node to the heat source (i.e., the collector array). The cooling tank is used most efficiently by 

delivering water from the bottom node to the cooling load (i.e., the radiant floor) and from the top 

node to the cooling source (i.e., the collector array). 

Tank Model Analysis 

Different TRNSYS components were considered for the stratified storage tanks representing 

the hot and cold storage reservoirs. Type 4e did not show realistic stratification behavior. Type 60c 

showed better stratification, but a flaw in this component was encountered that the distributor verified 

as an error and recommended Type 534 instead. Type 534-Coiled (which contains an internal heat 

exchanger coil) was selected. It showed realistic temperature stratification (shown in Figure 11) and 

was further investigated by comparing 534-Coiled and 4e components side-by-side in equivalent solar 

thermal loops. Figure 12 shows that they behaved similarly, with a slightly lower temperature 

displayed by 534-Coiled, which makes sense because it uses an internal heat exchanger rather than 

direct mixing. 
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Figure 11. Stratification behavior of Type 534-Coiled as fluid cools over time. 
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Figure 12. Average monthly temperatures produced by Type 534-Coiled and Type 4e tanks under 

similar conditions. 

 

 

Tank Size Optimization 

Burch et al. (2004) found that the optimal tank size for their unglazed collector array was 

about 80 L (or about 0.08 m3) per square meter of collector, but of all sizes simulated, the amount of 

energy saved ranged between 0.85 and 1.15 times the amount of the base case. Several simulations 

with various tank sizes were performed in the Raleigh climate for a glazed collector array of 7.6 m3 

and an unglazed collector array of 15.2 m3 (based on the understanding that glazed collectors tend to 

absorb more heat).  
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Figure 13. Total solar heating fractions (including space heating and DHW) versus tank size. 

 

 

As seen in Figure 13, the performance was relatively insensitive to tank size. A tank size of 

0.6 m3 should be a robust value that does not greatly alter the solar fraction as array size is varied. 

There may be a slightly lower efficiency as the array is increased and the tank size is held constant; 

however, by maintaining a constant tank volume, the incremental cost per collector was much clearer. 

Configuration Optimization 

Two different configurations were tested to determine which yielded a better solar fraction. In 

the first configuration, the solar collector fluid ran through the heat exchanger within the hot water 

tank and potable water was stored in the tank for DHW and space heating. In the second 

configuration, the collector fluid ran directly into the tank and the DHW was pre-heated by running 

through the heat exchanger. 

The total auxiliary energy consumption was tested by simulating each case with different 

sizes of unglazed collector arrays: one collector having an area of 3.8 m2 and an unrealistic saturation 

case using 760 m2 of collectors. Figure 14 shows that the configuration in which DHW is stored 
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directly in the tank yields a slightly better solar fraction under both minimum and maximum sizing 

conditions, and was chosen as for all system simulations. 

 
Figure 14. Total heating requirements with potable water stored in tank (1st configuration) or in heat 

exchanger (2nd configuration). 

 

Collector Modeling 

The solar thermal collectors were the most important components to accurately model in view 

of the research questions. Inaccuracies in the building or tanks generally affect both glazed and 

unglazed collectors equally, but inaccurate modeling of the collectors themselves would directly skew 

the comparison. Therefore, much attention was given to comparing the performance of the TRNSYS 

models against what would be expected based on the theoretical understanding of solar thermal 

collectors and measured performance curves. This section of the analysis first describes the basic 

equations governing collector performance and the TRNSYS components that are able to perform 

those calculations. Next I have outlined why certain TRNSYS components are better suited for 

answering the research questions than others in light of the calculations that had to be performed. I 

then discuss when theoretical models may become less predictive of actual performance, specifically 

for different models of convection. Finally, I describe the calculations that were performed to verify 

the TRNSYS models and compare the results between the two methods. 
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For reference, the collector models used in each type of simulation and their capabilities are 

listed in Table 18. The “Used” column describes whether the TRNSYS component can respond to 

changes in that variable. For example, the Type 539 component is based off of test results performed 

in a specified range of wind speeds, and therefore accounts for wind under typical conditions. 

However, it does not utilize wind speed directly as an input. Further justification for the choices is 

described in the following sections. 

Table 18. Collector Types Used and Variables Processed in Each Mode of Operation 

Function 
TRNSYS 

Model 

Solar Irradiance Wind Speed Sky Temperature 

Used? Needed? Used? Needed? Used? Needed? 

Glazed 

Heating 
Type 539 Yes Yes No No No No 

Glazed 

Cooling 
Type 942** Yes No Yes Yes Yes Yes 

Unglazed 

Heating 
Type 553 Yes Yes Yes* Yes Yes Yes 

Unglazed 

Cooling 
Type 553 Yes No Yes* Yes Yes Yes 

*Wind speed is indirectly processed by Type 553 as described later. 

**Type 942 is indirectly used through a correlation function described later. 

 

 

Collector Performance Theory 

An accurate model of a solar thermal collector must correctly describe the rate of absorbed 

radiation as well as the rates of convective and radiative heat loss. This task can be divided into two 

parts: first determining the incident radiation spectrum, temperature, and wind speed meeting a 

collector aperture, and secondly, accurately modeling the collector’s response to these environmental 

variables. 

The collector’s absorption of radiation is described by Duffie and Beckman (2006, p. 221), 

under the assumption that the diffuse sky radiation is isotropic: 

S = IbRb(𝜏𝛼)𝑏 + 𝐼𝑑(𝜏𝛼)𝑑 (
1 + cos ß

2
) + 𝜌𝑔𝐼𝑏 (

1 − cos ß

2
) 

In which: 
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S = Incident solar radiation, reduced by optical losses 

Ib = Beam radiation 

Id = Diffuse radiation 

(τα)b = Transmittance-absorptance product for beam radiation 

(τα)d = Transmittance-absorptance product for diffuse radiation 

ρg = Ground reflectance 

Rb = Ratio of beam radiation on tilted surface to beam on horizontal 

1+cos ß

2
 = View factor from the collector to the sky 

1−cos ß

2
 = View factor from the collector to the ground 

ß = Collector slope 

The amount of irradiance reaching a surface at a specific tilt and azimuth is easily generated 

in TRNSYS using a Type15 weather component. The isotropic sky model of diffuse radiation is 

specified in a parameter named “Tilted Surface Radiation Mode” with a value of 1. The slope of the 

surface of interest (e.g., a building façade or collector absorber) is also a weather component 

parameter. Beam, diffuse, ground-reflected, and total radiation are outputs supplied at any tilt and 

azimuth entered into the weather component.  

According to the TRNSYS 17 Solar Library Mathematical Reference (Thermal Energy 

System Specialists [TESS], 2009), isotropic diffuse sky radiation is also assumed by the models 

selected for the heating simulation; Type 539 representing a glazed collector and Type 553 

representing an unglazed collector. The transmittance and absorptance of the collectors are included 

implicitly in their efficiency curves utilized by the components. 

Radiative heat loss primarily depends on surface temperature and an output of the weather 

component called “effective sky temperature.” This is calculated by TRNSYS and depends on 

humidity and cloud-cover. At a given ambient temperature, a collector tends to lose more heat when 
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the humidity is low and the sky is clear. The magnitude of radiative heat transfer is governed by the 

equation (Duffie & Beckman, 2006, p. 149): 

ℎ𝑟 =
𝜎(𝑇2

2 + 𝑇1
2)(𝑇2 + 𝑇1)

1 − 𝜀
𝜀1

+
1

𝐹12
+

(1 − 𝜀2)𝐴1
𝜀2𝐴2

 

In which: 

σ = Stefan-Bolzmann constant (5.670373 x 10-8 𝑊/(𝑚^2 𝐾)) 

T1 = Surface 1 temperature in Kelvin 

T2 = Surface 2 temperature in Kelvin 

ε1 = Surface 1 emissivity 

ε2 = Surface 2 emissivity 

A1 = Surface 1 area in m2 

A2 = Surface 2 area in m2 

F12 = View factor from Surface 1 to Surface 2 

The selected collector components used to model cooling performance utilize sky 

temperature as an input and allow the emissivity of the absorber plate to be specified.  

Convective heat loss depends on the temperature of ambient air and wind speed – both 

outputs of the weather component. However, wind speed varies based on the landscape and there are 

different mathematical models describing how much heat a surface loses in response to a given wind 

speed. According to Duffie and Beckman (2006, pg. 166) the convective heat loss coefficient for 

collectors mounted flush to the roof is: 

ℎ𝑤 = max [5,
8.6𝑉0.6

𝐿0.4
] , 

where V is the wind velocity, L is the cube root of the house volume in meters, and “max” 

indicates that a value of 5 W/(m2.K) should be used if the calculated convection is less than this. 

Convective losses are calculated directly by some collector component types in TRNSYS but 

expressed as part of an overall heat loss coefficient in others. 
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TRNSYS Modeling 

Unglazed collector. 

Because both sky temperature (Ts) and wind speed (V) factor into the losses of an unglazed 

collector, the component model must utilize both of these inputs. There are multiple choices of 

unglazed collectors available between the standard TRNSYS component library and the proprietary 

components provided by Thermal Energy System Specialists (TESS). These include Type 553: 

“Unglazed Flat Plate Collector with Capacitance and Flow Modulation”, Type 559: “Theoretical 

Unglazed Collector” (TESS, 2009) and Type 72: “Solar Collector, Performance Map” (Solar Energy 

Laboratory, 2009a). 

Type 559 models the performance of a collector based on theoretical equations of heat gain 

and heat loss. In addition to the usual inputs of ambient temperature and incident solar radiation, it 

utilizes sky temperature and wind velocity in the calculation of its output. However, these are used in 

the calculation of the heat transfer coefficient, UL, which is ultimately substituted into the Hottel-

Whillier equation (TESS, 2009, p. 108): 

𝑄𝑢 = 𝐴𝐼𝑡𝐹𝑅(𝜏𝛼)𝑛 − 𝐴𝐹𝑅𝑈𝐿(𝑇𝑖 − 𝑇𝑎) 

Where: 

Qu = Useful heat gain 

It = Irradiation on tilted surface 

FR = Collector heat removal factor 

A = Collector gross area 

Ti = Inlet temperature 

Ta = Ambient temperature 

The Hottel-Whillier equation, referencing ambient temperature but not sky temperature, will 

yield a Qu that approaches zero as irradiance becomes zero and the inlet temperature approaches 

ambient temperature. Therefore, it is not possible for the collector to cool a fluid below ambient 

temperature under night sky conditions according to this model, limiting its usefulness for modelling 
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night-sky radiative cooling. Moreover, varying the parameter of effective sky temperature while 

holding all others constant shows that the plate responds oppositely to what would be expected in a 

physical collector: as sky temperature increases in the model, plate temperature decreases. This error 

is documented in Appendix B and was discussed with the distributor for correction. 

Type 553 models an unglazed collector according to a differential equation equating the rate 

of energy change in the collector to the difference between the rate of absorbed irradiance (minus 

losses) and the rate at which heat is carried away by the fluid (TESS, 2009, p. 89): 

 𝐶
𝑑𝑇

𝑑𝑡
= 𝐴 ∗ 𝐹′ ∗ (𝑆 − 𝑈𝐿(𝑇 − 𝑇𝑎)) − �̇� ∗ 𝐶𝑝(𝑇 − 𝑇𝑖𝑛), 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 

𝑆 = 𝐼𝐴𝑀𝑏 ∗ 𝐼𝑏𝑡 + 𝐼𝐴𝑀𝑑𝑠 ∗ 𝐼𝑑𝑠𝑇 + 𝐼𝐴𝑀𝑑𝑔 ∗ 𝐼𝑑𝑔𝑇 − 𝐼𝐴𝑀𝑑𝑠 ∗ 𝜎(𝑇𝑎
4 − 𝑇𝑠𝑘𝑦

4 ) ∗ 𝜀/𝛼 

In the equation for absorbed irradiance, S, the IAM terms represent incident angle modifiers 

for beam and diffuse radiation from the ground and sky. The complete mathematical model is long 

and complex, but a key feature of the model is the ability of the collector to drop below ambient 

temperature via longwave radiation to the sky. However, it does not directly utilize wind speed. 

Fortunately, the wind speed can be simulated by dynamically changing the efficiency curve of the 

collector, which is classified as an input of the component rather than a parameter. Type 553 therefore 

satisfies the critical requirements for modeling night sky radiative cooling and was selected for the 

simulation. The TRNSYS component model is shown in Figure 15. 
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Figure 15. Modeling wind effects on Type 553 collector. 

 

 

Glazed collector. 

The TRNSYS component that utilizes the SRCC performance curve for a glazed collector 

does not account for wind speed. Although glazed collectors are not typically used for cooling, it was 

desired to investigate their performance in this mode in order to make a fair comparison to unglazed 

collectors. The Type 942 component is able to simulate the effect of these important variables on the 

collector, but it does not directly utilize the SRCC performance curve. This is circumvented by 

calibrating the Type 942 component to the Type 539 component, which directly utilizes the tested 

Rheem RS40-BP performance curve.  

The Type 942 insulation thickness, plate absorptance and emissivity, and cover emissivity 

were varied until the outlet temperatures resembled the Type 539 outlet temperatures as closely as 

possible in the climate of Raleigh. For the purpose of calibration, the sky temperature was equated to 

the dry bulb temperature and the wind temperature was set to a constant 2 m/s. The outlet 

temperatures were the result of running a constant stream of 50 °C water at a rate of 0.02 kg/s.m2 

through the collector. Although the Rheem RS40-BP is classified as a nonselective collector, it was 

necessary to give the absorber plate slightly selective properties (with an absorptance of 0.94 and 

emissivity of 0.75) in order to closely emulate its performance. A comparison between the two 

models in winter and summer months are shown in Figure 16 and Figure 17, respectively. 
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Figure 16. TRNSYS plotting tool showing comparison between Type 942 and Type 539 outlet 

temperatures in winter. 
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Figure 17. TRNSYS plotting tool showing comparison between Type 942 and Type 539 outlet 

temperatures in summer. 

 

 

The Type 539 collector was used for heating simulations because it is the most direct 

replication of the SRCC performance curve; however, cooling simulations are based off of this 

calibration. 

Wind Sensitivity 

Wind effects are a great source of uncertainty in making an accurate comparison between 

glazed and unglazed collector performance. The first source of uncertainty is the difficulty of 

predicting the magnitude of wind at a site from TMY weather data. The second issue is that there are 

different models of how a collector will respond to wind. Although a convection coefficient may 
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describe the behavior of a collector at a test site very well, it may not work as well at the site of 

installation because of different mounting methods, wind directions, or turbulence levels. Duffie and 

Beckman (2006) argue that the size of a house on which a collector is mounted also affects the rate of 

convective heat loss. 

Because the absorber plate of an unglazed collector is directly exposed to ambient air, 

convection is especially important in unglazed collectors. Convection can be modeled implicitly in 

the Type 553 component using the wind term, u, within the SRCC performance curve:  

𝜂 = (0.941)(1 − 0.0412𝑢) − (11.6348 + 5.0697𝑢) ∗
(𝑇𝑖−𝑇𝑎)

𝐺
. 

Figure 18 shows the magnitude of the wind’s effect on efficiency and Figure 19 shows the 

effect of natural wind conditions on unglazed collector outlet temperature in comparison to a collector 

exposed to no wind. The collector model in Figure 19 was simulated under no-flow conditions in 

order to see the maximum effect of wind. Wind is strongly counterproductive in heating conditions 

and also has a very slight adverse effect under cooling conditions (as indicated by the lower peaks and 

slightly higher troughs of the unglazed collector in the “Wind” condition). 
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Figure 18. Unglazed collector efficiency versus Ti - Ta at irradiance of G = 500 W/m2 for various 

wind speeds. 
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Figure 19. Unglazed collector outlet temperatures during summer in Raleigh in response to TMY2 

wind speeds and windless conditions. 

 

In contrast to the unglazed collector, the glazed collector proved to be insensitive to wind. 

The ISO equation for glazed collectors contains no wind term and ISO 9806 (International 

Organization for Standardization [ISO], 2013) only requires that they be tested at speeds between 2 

m/s and 4 m/s. The wind sensitivity for glazed collectors was investigated by using a TESS Type942 

component by alternating wind speed input between 0 m/s and 5 m/s at various inlet temperatures to 

derive the overall sensitivity of the collector to wind, as seen in Figure 20. The performance results 

shown in Figure 20 are for the Heliodyne Gobi Model 410 002, which has similar performance to the 

Rheem model. The Rheem was chosen later in the analysis for its non-selective absorber surface and 

thus superior cooling performance, making it a better choice for comparison to the unglazed collector. 
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Figure 20. Glazed collector efficiency versus Ti – Ta at irradiance of G = 500 W/m2 for wind speeds 

of 0 m/s and 5 m/s. 

 

Convective Heat Transfer Coefficients 

There are several mathematical models that correlate wind speed with the convective heat 

losses from solar thermal collectors, often producing very different results. This created some 

uncertainty in verifying the accuracy of the unglazed collector model. The International Energy 

Agency (1993) provided an overview of convection coefficients used in unglazed collectors, 

referencing a study by Perers (1987) that compared four different models of convection against 

experimental measurements he performed on unglazed collectors. One convection model that seemed 

to fit the data well had the equation: 

ℎ𝑐,𝑝−𝑎 = 5.7 + 3.8𝑢 
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However, Duffie and Beckman (2006) reported that this coefficient likely includes free 

convection and radiation effects, and therefore suggested using a corrected form of the equation 

developed by Watmuff: 

ℎ𝑐 = 2.8 + 3.0𝑢 

Duffie and Beckman (2006) suggested that the best model of convection losses for collectors 

mounted flush to a roof came from the experimental results of Mitchell, who tested heat transfer 

effects on differently shaped objects in a wind tunnel. The suggested equation is: 

ℎ𝑤 = max [5,
8.6𝑉0.6

𝐿0.4  ] 

The TRNSYS model of the unglazed collector predicts its performance based primarily on its 

ISO efficiency equation derived from experimental results, rather than on theoretical loss coefficients. 

This produces greater confidence in the model, but can also be a source of error if the collector 

mounting does not resemble mounting on a residential roof.  

In order to decide on the best convection coefficient, theoretical heat gains under various 

convection coefficients were compared to the ISO curve-fit for the Fafco Sungrabber. The curve-fit 

adopted by Burch et al. (2004) in their analysis of unglazed collectors was also modeled for 

comparison. The results shown in in Figure 21 are based on calculations that considered absorbed 

irradiance (Qabsorbed), long-wave radiation losses to the sky (Qrad), and convection losses (Qconv): 

𝑄𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 = 𝑆 − 𝑄𝑟𝑎𝑑 − 𝑄𝑐𝑜𝑛𝑣 

𝑆 = 𝛼𝐺 

𝑄𝑟𝑎𝑑 = ℎ𝑟𝑎𝑑(𝑇𝑝𝑙𝑎𝑡𝑒 − 𝑇𝑠𝑘𝑦)  

𝑄𝑐𝑜𝑛𝑣 = ℎ𝑐𝑜𝑛𝑣(𝑇𝑝𝑙𝑎𝑡𝑒 − 𝑇𝑎𝑖𝑟) 



64 

 

 

 
Figure 21. ISO-equation predicted performance and theoretical performance of unglazed collectors at 

an irradiance of G = 500 W/m2 and Ti – Ta = 15 °C for various convection coefficients.  

 

 

Although long-wave radiation and conduction to other objects are ignored, Figure 21 

demonstrates that many models diverge from the ISO performance curve as wind speed changes, 

showing the criticality of convection. The free convection predicted by the Jurges coefficient 

(International Energy Agency, 1993) and by Duffie and Beckman (2006) agree with the ISO 

performance curve under windless conditions but diverge significantly from the ISO curve at higher 

wind speeds. None of the theoretical models seem to adequately track the performance curve 

described by the ISO equation for the Fafco Sungrabber. 

These results forced a decision between using a performance curve generated from test results 

and modeling performance based on the theoretical mechanisms of heat exchange. Based on its 

description, the Duffie Beckman convection coefficient for a roof-mounted collector would be the 
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most fitting theoretical model for this application. However, it is also most sharply at odds with the 

heat loss that can be inferred from the SRCC performance curve. A possible compromise between 

these results would be to use the SRCC performance curve in conjunction with a larger wind 

reduction factor to correct for lower convective losses. However, choosing uncertain estimates for the 

unglazed collector parameters would make it more difficult to understand the causes of differences in 

performance between the collectors. A decision was made to use the SRCC performance curve to 

describe wind effects on the unglazed collector so that the model is anchored to physical 

measurements, and it can at least be understood that it may likely underestimate the efficiency. 

Wind Reduction Factor 

Burch et al. (2004) noted that the wind in residential areas is often much lower than 

measurements at airports, which often form the basis for TMY files. They applied a wind reduction 

factor of 0.3 to correct for this. The User’s Manual for TMY2s, Typical Meteorological Years (Marion 

& Urban, 1995) provided the latitude and longitude of the sampling stations where the weather data 

was collected. The statement of Burch et al. (2004) was verified by viewing each set of coordinates 

on Google Maps: the Albuquerque station is at N36 3, W106 37, beside the Albuquerque 

International Sunport airport. The Raleigh station is at N35 52, W 78 47, beside the Raleigh-Durham 

International Airport. And the Jacksonville station is at N30 30, W 81 42, beside the Jacksonville 

International Airport. 

Heisler (1990) measured the wind speed upwind of 15 residential buildings in four 

neighborhoods with differing tree densities to compare them to wind speeds measured at the closest 

airport. The measurements were obtained over the course of 14 days divided between summer and 

winter. Even in a neighborhood without trees, there was a 24% reduction in mean wind speed, while a 

neighborhood with a high density showed a reduction of 65% to 70% in winter and summer, 

respectively.  

A middle-ground wind reduction factor of 0.5 was used in the simulations to describe the 

velocity in a residential neighborhood with average tree density. For the purpose of verifying cooling 
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performance of glazed and unglazed collectors, which are not described by any existing performance 

curves, the Jurges coefficient was used, understanding that there may be some error. 

Collector Verification 

Solar collectors are traditionally used for heating, and their performance is relatively well 

established through test results. The performance when used for cooling is less easily verified; 

therefore, theoretical cooling rates of glazed and unglazed collectors were calculated to assess the 

validity of the simulation’s cooling response. The rate of heat loss from the absorber plate in a 

TRNSYS simulation was compared to theoretical calculations. Both the TRNSYS model and the 

theoretical calculations assumed the collector is in steady-state conditions. 

The calculations for each of the two types were done at equal absorber plate temperatures at 

equal ambient conditions. In order to simplify the verification for the glazed collector, only the rate of 

heat transfer from the collector aperture was calculated while heat loss from the collector back and 

sides were minimized in the TRNSYS simulation by specifying insulation with an extremely low U-

Value. The following parameters were assumed: 

Ambient Conditions 

Air Temperature: 20 °C (≈293 K) 

Sky Temperature: 10 °C (≈283 K) 

Wind Speed: 1 m/s 

Irradiance: 0 W/m2 

Collector Conditions 

Absorber Plate Temperature: 25 °C (≈298 K) 

Absorber Plate Emissivity: 0.95 

Plate to Glazing Spacing: 0.025 m (glazed only) 

Glazing Emissivity: 0.88 (glazed only) 

Glazing Transmissivity: 0.865 (glazed only) 

Collector Tilt: 0° 
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Glazed collector. 

The equations for convective and radiative heat loss from a collector assume that the 

temperature of the top surface is known; for a glazed collector, this is the cover temperature. I wanted 

to compare the cooling power of a glazed collector with an unglazed collector at an equal plate 

temperature, so the cover temperature had to be deduced based on the plate temperature and ambient 

conditions. This was an iterative process guided by the following steps: 

1) An initial cover temperature was guessed. 

2) Heat transfer coefficients were calculated based on this cover temperature. 

3) An energy balance on the cover was performed using these heat transfer coefficients. 

4) The cover temperature was adjusted and the process was repeated until the net energy 

flux across the cover was zero (indicating that the process is in steady-state). 

The convective heat transfer coefficient between the absorber plate and cover was guided by 

an equation described by Duffie and Beckman (2006): 

ℎ𝑐 = 𝑁𝑢 ∗ 𝑘/𝐿 

However, the Nusselt number is not directly known and the calculation ultimately ended up 

depending on the following variables: 

𝑁𝑢 = Nusselt Number (ratio of conduction resistance to convection resistance) 

𝑅𝑎 = Rayleigh Number (also indicates importance of conduction vs. convection) 

𝑔 = gravitational constant 

𝑇 = temperature of air within collector 

𝑘 = thermal conductivity of air 

𝛼 = thermal diffusivity of air 

𝑘 = thermal conductivity of air 

𝑘 = thermal conductivity of air 

ß′ = volumetric expansion coefficient of air = 1/T 

ß = angle of collector tilt 
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𝑁𝑢 = 1 + 1.44 [1 −
1708 ∗ (sin 1.8ß)1.6

𝑅𝑎 ∗ cos ß
] ∗ [1 −

1708

𝑅𝑎 ∗ cos ß
]

+

+ [(
𝑅𝑎 ∗ cos ß

5830
)

1
3

− 1]

+

 

𝑅𝑎 =
𝑔 ∗ ß′ ∗ ∆𝑇 ∗ 𝐿3

𝜈 ∗ 𝛼
 

The properties of air had to first be estimated at 20 °C: 

k = 0.0257 W/m.K (conductivity) 

ν = 1.51 * 10-5 m2/s (kinematic viscosity) 

α = 2.12 * 10-5 m2/s (thermal diffusivity)  

The heat balance equation was then solved to arrive at the cover temperature: 

ℎ𝑝−𝑐,𝑟𝑎𝑑 ∗ 𝐴(𝑇𝑝 − 𝑇𝑐) + ℎ𝑝−𝑐,𝑐𝑜𝑛𝑣 ∗ 𝐴(𝑇𝑝 − 𝑇𝑐) = ℎ𝑐−𝑠,𝑟𝑎𝑑 ∗ 𝐴(𝑇𝑐 − 𝑇𝑠) + ℎ𝑐−𝑎,𝑐𝑜𝑛𝑣 ∗ 𝐴(𝑇𝑐 − 𝑇𝑎) 

The subscripts p, c, s, and a represent absorber plate, cover, sky, and ambient air, 

respectively. The subscripts conv and rad represent convective and radiative modes of heat transfer, 

respectively. For example, ℎ𝑝−𝑐,𝑟𝑎𝑑 represents the radiative heat transfer coefficient from absorber 

plate to cover. 

Substituting the known values into the Nusselt and Rayleigh number equations provided the 

heat transfer coefficients, allowing the cover temperature to be solved for a value of Tc = 19.36 °C 

(performed iteratively with Excel). This implied a mean air space temperature of (Tp + Tc) / 2 = 22.18 

°C, which was close enough to the original estimate such that its properties (such as conductivity) 

will change only minimally with subsequent iterations. The heat transfer out of the cover was finally 

calculated from the right side of the heat balance equation to get the cooling power of a glazed 

collector: 40.26 W/m2. Thus, its cooling power was found to be only about 31.8% of the unglazed 

collector’s capacity at the assumed conditions. This percentage could vary with different ambient or 

collector conditions. 
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Unglazed collector. 

The rate of heat transfer from the unglazed collector is the sum of radiative and convective 

heat transfer. The radiative heat transfer coefficient was found by substituting the stated values into 

the previously defined equation: 

ℎ𝑟 = 0.95 ∗ 5.670373 x 10−8
𝑊

𝑚2𝐾4
∗ ((283 𝐾)2) + (298 𝐾)2)(283 𝐾 + 298 𝐾) 

 = 5.286 𝑊/𝑚2𝐾. 

The convective heat transfer coefficient was found by substituting wind speed (V) and 

characteristic length (L) into ℎ𝑤 = 5.7 + 3.8𝑢 = 9.5
𝑊

𝑚2𝐾
. Each of these heat transfer coefficients 

then determined actual heat flux: 

𝑄𝑟 = 5.286
𝑊

𝑚2𝐾
∗ (298 𝐾 − 283 𝐾) = 79.28 𝑊/𝑚2 

𝑄𝑤 = 9.5
𝑊

𝑚2𝐾
∗ (298 𝐾 − 293 𝐾) = 47.5 𝑊/𝑚2 

Thus, the total rate of cooling for an unglazed collector under the stated conditions was Qr + Qw = 

126.78 W/m2. 

Cooling performance verification. 

The parameters in the above analysis were replicated in TRNSYS component Type 942 

(representing a glazed collector) and component Type 553 (representing an unglazed collector). Edge 

losses and back losses for the glazed collector were minimized by using thick (1 m) insulation with 

minimal conductivity. The Type 553 component, however, does not consider back and edge losses of 

the unglazed collector separately from overall collector losses. The plate temperatures of the 

theoretical cases could not be replicated exactly, but were achieved within 0.3 °C within the Type 942 

components representing glazed collectors. The Type 553 components do not report plate 

temperatures but were inferred to be close based on the fluid outlet temperatures. The results of the 

verification process are shown in Table 19.  
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Table 19. Verification of Cooling Performance for Glazed and Unglazed Collectors 

Method of Calculation 
Cooling Power at 1 m/s wind 

(W/m2) 

Cooling Power at 3 m/s wind 

(W/m2) 

Glazed Collector 

Theoretical 40.26 39.26 

Simulated 40.39 39.46 

% Difference -0.32% -0.51% 

Unglazed Collector 

Theoretical 126.78 164.78 

Simulated 136.57 183.19 

% Difference -7.72% -11.8% 

 

Glazed collector cooling adjustment. 

When the glazed collector inlet temperature was above ambient temperature, the model 

seemed to closely match theoretical calculations. However, once the collector reached ambient 

temperature, the Type 942 model did not allow the collector to cool further by radiating heat to the 

sky. 

A correlation analysis was performed to model cooling performance at sub-ambient 

temperatures. A series of 27 side-by-side simulations were performed for the glazed collector and 

unglazed collector under a variety of combinations of air temperature, inlet temperature, sky 

temperature, and wind speed. Overall, in the above-ambient temperature range, the glazed collector 

cooling power ranged from 15.5% to 34.2% of the unglazed collector’s cooling power. The ratio was 

most sensitive to wind speed.  

A regression line was fit to the relationship between wind speed and the cooling power ratio 

to create an alternative means of calculating the glazed cooling power. Each point in Figure 22 is an 

average value for multiple simulations. 
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Figure 22. Ratio of glazed collector cooling power to unglazed collector cooling power as a function 

of wind speed. 

 

 

The glazed collector was emulated by scaling the slope and intercept of the ISO efficiency 

equation for the unglazed collector according to the formula for the line of regression. The bold terms 

in the equations below show the adjustments to the ISO equation, in which u is wind speed and RF is 

the wind reduction factor equal to 0.5.  

𝑆𝑙𝑜𝑝𝑒 =  (𝟎. 𝟑𝟏𝟓𝟗 − 𝟎. 𝟎𝟐𝟒𝟓𝒖) ∗ 3.6 ∗ (11.6348 + 5.0697𝑢 ∗ 𝑅𝐹) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = (𝟎. 𝟑𝟏𝟓𝟗 − 𝟎. 𝟎𝟐𝟒𝟓𝒖) ∗ (0.941 ∗ (1 − 0.0412𝑢 ∗ 𝑅𝐹)) 

However, because it is possible for the slope and intercept to become negative at high wind 

speeds, causing TRNSYS to abort the simulation, the equations were run through a filter that returns a 

zero value if they are not positive. 

Heating performance verification. 

 The parameters for the heating performance verification remained equal to those for the 

verification of cooling performance with the exceptions of ambient temperature, plate temperature, 

and solar irradiance. Plate temperature was increased to 30 °C and ambient temperature was dropped 

to 15 °C to be more representative of typical heating conditions. All solar irradiance was modeled as 

beam radiation at an intensity of 500 W/m2. 
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The results of the verification process are shown in Table 20. The TRNSYS results for the 

glazed collectors were very close to theoretical values. The TRNSYS results for unglazed collectors, 

however, were markedly different than theoretical results. The problem was exacerbated at higher 

wind speeds. As previously discussed, this was likely because the measured performance curve did 

not fit the expectations of any discussed convection coefficients. This also describes why the 

difference would be greater in heating mode, when the plate temperature is further from air 

temperature. 

Table 20. Verification of Heating Performance for Glazed and Unglazed Collectors 

Method of Calculation 
Heating Power at 1 m/s wind 

(W/m2) 

Heating Power at 3 m/s wind 

(W/m2) 

Glazed Collector 

Theoretical 348.22 339.7 

Simulated 337.39 328.17 

% Difference 3.1% 3.4% 

Unglazed Collector 

Theoretical 223.98 109.98 

Simulated 184.72 11.51 

% Difference 17.5% 89.5% 

 

Collector Absorptance Sensitivity 

The absorber plate’s emissivity and absorptance are implied when entering the slope and 

intercept of the Hottel-Whillier equation, 𝑄𝑢 = 𝐴𝐼𝑡𝐹𝑅(𝜏𝛼)𝑛 − 𝐴𝐹𝑅𝑈𝐿(𝑇𝑖 − 𝑇𝑎), in which the 

intercept (i.e., the point of maximum efficiency) is defined by 𝐹𝑅(𝜏𝛼)𝑛 and the slope is defined by 

𝐹𝑅𝑈𝐿. The loss factor 𝑈𝐿 depends partly on the radiation loss coefficient, which is dependent on the 

emissivity (ε) of the absorber plate and/or cover. Therefore, both absorptance (α) and emissivity (ε) of 

the plate factor into the efficiency curve. However, the Type 553 model also requires explicit inputs 

for these parameters—not as part of the efficiency curve, but as completely separate parameters—so 

it had to be determined how this redundancy is processed by the model. 
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Figure 23. Type 553 unglazed collector sensitivity to absorptance and emissivity parameters. 

 

 

Figure 23 shows that Type 553 was relatively insensitive to the parameters input for 

absorptance and emissivity; in fact, there was no change in collector temperature as long as a constant 

ratio of absorptance to emissivity was maintained. There was a minor increase in temperature overall 

when the emissivity was reduced to emulate a selective surface, but the performance was by far 

dominated by the slope and intercept of the efficiency curve. The actual emissivity and absorptance of 

the collector could not be obtained from the manufacturer and were therefore kept at values typical of 

an unselective surface with α=0.95 and ε=.095. 

The Type 553 component has its limitations: For example, inspection of its equation shows 

that it is possible for the component to absorb irradiance even when absorptance is zero (if ε also 

equals zero), which would be physically impossible. However, the model may work well with typical 
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collector parameters. To test this hypothesis, Type 553 was compared against Type 559, which uses a 

theoretical model. At an arbitrarily chosen flow rate 250 kg/hr, the theoretical model was calibrated to 

match the performance of Type 553 by adjusting its heat loss coefficient. The outlet temperatures 

between the two models tracked each other very closely in the climate of Raleigh (seen in Figure 24), 

and it seems that the inability of Type 559 to model sub-ambient temperatures may not be very 

critical. However, in the climate of Albuquerque the difference was much more apparent. As shown 

in Figure 25, Type 553 got several degrees colder at night. 
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Figure 24. Type 559 and Type 553 performance during cooling season in Raleigh. 

 

 
Figure 25. Type 559 and Type 553 performance during cooling season in Albuquerque. 
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Diffuse Radiation Sensitivity 

According to ISO 9806 (ISO, 2013, p. 32), the performance of most collectors is better in 

response to beam radiation than diffuse radiation, and because there is “little experience with diffuse 

solar simulation,” the test method is designed for a beam of radiation at nearly perpendicular 

incidence to the collector plane. Figure 26 shows that Raleigh and Jacksonville have very similar 

insolation profiles, but Albuquerque has a higher proportion of beam radiation. 

 
Figure 26. Percentage of insolation characterized as beam, diffuse sky, and ground-reflected radiation 

in each climate. 

 

A sensitivity analysis was performed on the TRNSYS Type 559 glazed collector component 

and the Type 553 unglazed collector component. The fraction of beam radiation (in terms of total 

radiation) received by the collector aperture was varied between 100% and 70%. There was a 

reduction in collector heat gain of 4.5% and 5.3% for the glazed and unglazed collector, respectively. 

Although this may affect performance estimates for individual systems, the reduction in performance 

was similar enough between collector types that it did not significantly affect the comparison. 

Freezing Potential 

Both glazed collectors and unglazed collectors can be damaged by freezing conditions (Fafco 
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climates to determine the minimum temperature experienced annually and thus the amount of 

antifreeze required in the mixture. This temperature was obtained by connecting dry bulb 

temperature, effective sky temperature, and irradiance to the collector and simulating the outlet 

temperature over 12 months at a 0 kg/s flow rate. This was performed at windless conditions to obtain 

the worst-case scenario in terms of freezing. 

There was not a great difference in minimum temperatures achieved between climates. Table 

21 shows that Raleigh carries the greatest risk, followed in order by Albuquerque and Jacksonville. 

Based on manufacturing freezing-point data for propylene glycol (DowFrost), a 40% glycol to 60% 

water mixture, by weight, would be sufficient to prevent freezing down to -21.1 °C. 

Table 21. Minimum Ambient Temperature and Collector Temperature Experienced in Each Climate 

Type of Temperature Raleigh Jacksonville Albuquerque 

Ambient (°C) -13.3 -7.2 -11.1 

Unglazed Collector Outlet (°C) -20.3 -15.1 -17.8 

 

Sensitivity of Performance to Glycol 

The Type 553, Type 539, and Type 942 components make adjustments to the collector 

efficiency based on the difference between the specific heat of the current fluid and the specific heat 

of the tested fluid. The certificate for each type of collector shows that it was tested with plain water. 

A sensitivity analysis was performed on both collectors at steady-state conditions of Gb = 700 W/m2, 

Ti – Ta = 10.7 °C between a glycol constitution of 0% and 40%. Table 22. shows that the resulting 

decrease in heat gain was negligible. 

Table 22. Sensitivity of Collector Performance to Fluid Type 

Collector Type 
Useful Energy using 

Plain Water (W/m2) 

Useful Energy Using 60% 

Water, 40% Glycol 

(W/m2) 

% Decrease 

Glazed 472.02 470.53 0.32% 

Unglazed 410.95 408.99 0.48% 
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Boiling Potential 

Frank, Mauthner, and Fischer (2015) described various problems that occur when water boils 

within a collector, including loss of the working fluid and damage to the collector and other 

components. A worst-case scenario was considered for each collector to assess the maximum fluid 

temperature at which it would continue to collect heat. Inspection of TMY3 files (used for their 

Excel-compatible format) for each region showed that these conditions could probably occur in 

Albuquerque, which achieves a high temperature of 36.95 °C (98.5 °F) in a typical meteorological 

year.  

A quick inspection of the Rheem RS40-BP ISO equation made it obvious that boiling is a real 

risk for the glazed collector, but the risk of boiling in the unglazed collector needed closer inspection. 

A TRNSYS simulation of stagnation was performed with a flow of 0 kg/s through a Type 553 

component in windless conditions. The maximum fluid temperature achieved in Albuquerque without 

wind was 107.2 °C. The maximum fluid temperatures occurring in Jacksonville and Raleigh in 

windless conditions were 102.7 °C and 99.4 °C, respectively. However, with the addition of wind 

(reduced by a factor of 0.5), the maximum annual temperatures became 81.0 °C, 87.4 °C, and 87.5 °C 

for Albuquerque, Jacksonville, and Raleigh, respectively. So, it seems that boiling is a very small risk 

for unglazed collectors. 

Flow Rate Optimization 

I originally intended to optimize the flow rate of the solar thermal system. However, there 

were various limitations to my ability to achieve this. The first issue is the different fluid capacities of 

the collectors; the unglazed collector holds much more fluid per unit area and therefore would require 

a naturally higher flow rate to achieve the same speed of fluid movement. A higher speed of fluid 

movement would imply a smaller temperature increase across the absorber plate and better efficiency, 

all other factors being equal. The collector certificates show that the unglazed collector holds 2.86 

L/m2 while the glazed collector only holds 1.26 L/m2. Therefore the unglazed collector requires a 

higher flow rate. 
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The second issue with optimizing flow rate is an inability to determine the turbulence of the 

fluid. As discussed by Helvaci and Khan (2015), the heat transfer coefficient and efficiency of a 

collector depend on whether its flow is laminar or turbulent, with turbulent being more efficient. 

Turbulence is a direct function of the Reynold’s Number, which depends on the diameter of the riser 

tubes. This information was not included in the SRCC certificate of the glazed or unglazed collector. 

Moreover, the TRNYS Type 553 component representing the unglazed collector does not utilize the 

parameters necessary to perform this calculation. Therefore, using values other than the rated flow 

rates may not accurately represent the collectors’ efficiencies. 

To test whether a crossover between laminar and turbulent flow might actually occur during 

optimization, a hypothetical example was investigated. A collector was assumed to have the 

following properties and conditions: 

 Area: 3.8 m2 

 Number of Riser Tubes: 10 

 Riser Tube Diameter (D): .01 m 

 Fluid Dynamic Viscosity (µ): 0.000798 kg/m.s (water at 30 °C) 

 Fluid Density (kg/m3): 1,000 (liquid water) 

It was determined that each tube in this example must have a fluid velocity of approximately 

0.1 m/s to achieve the ASHRAE recommended flow rate of 0.02 kg/s.m2. A Reynold’s number of 

1,253 was calculated from the formula below, indicating laminar flow. It is very conceivable that the 

fluid could transition into turbulence as flow rate is increased, or vice versa. Because it cannot be 

known where this transition actually occurs, the collectors were simulated only under the rated flow 

rates: 

𝑅𝑒 =
𝜌𝑣𝐷

µ
     [𝐿𝑎𝑚𝑖𝑛𝑎𝑟 𝑖𝑓 < 2100, 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑖𝑓 > 4000] 

A sensitivity test was performed on two different sizes of unglazed collector arrays in 

Albuquerque to two different flow rates.  
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Figure 27 shows that the performance varied little. Another sensitivity test was performed on 

a 7.6 m2 glazed collector in Albuquerque. Figure 28 shows that the performance varied significantly 

more, likely because the temperature increase across a glazed collector between inlet and outlet is 

much greater than for an unglazed collector, presenting a greater opportunity for heat loss. However, 

because of the issues discussed, there is a large amount of uncertainty in whether a similar degree of 

optimization can be equally applied to both collectors.

 

Figure 27. Solar fraction achieved by unglazed collectors at different flow rates. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

7.6 m^2 45.6 m^2

So
la

r 
Fr

ac
ti

o
n

Array Size (m2)

Low (0.02 kg/s) High (0.07 kg/s)



81 

 

 

 
Figure 28. Solar fraction of glazed collectors at different flow rates. 

 

 

Solar Loop Controls Optimization 

The main controls consideration for the collector loop is the appropriate temperature 

differential for turning the pump on and off. The controller reads the difference between the 

temperature of the collector outlet and the tank heat exchanger outlet, and the temperature difference 

controls the pump state. The default setting for the Type 2b differential controller is a turn-on 

differential of 10 °C (required to turn the pump on) and a turn-off differential of 2 °C (required to turn 

the pump off). Analysis showed that any substantial turn-off differential above 0 °C is detrimental. 

Figure 29 shows the collector outlet temperature and the difference between collector and heat 

exchanger outlet under constant irradiance. The heat exchanger rapidly approaches the collector 

temperature. If there is even a 1 °C turn-off differential, the system begins to short cycle, signified by 

the rapidly fluctuating temperatures. If the turn-off differential is eliminated (i.e., set to 0 °C), the 

fluctuations disappear and the only variation is caused by hot water draw (Figure 30). 
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Figure 29. Controller performance using a turn-off differential of 1 °C between the collector outlet 

and tank heat exchanger outlet. 
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Figure 30. Controller performance using a turn-off differential of 0 °C between the collector outlet 

and tank heat exchanger outlet. 
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Chapter Five: Results and Conclusions 
 

Climate Analysis 

The collector heating performance depends on the ambient temperature, irradiance, wind 

speed, and to an extent, sky temperature. The most important variable to the performance of glazed 

collectors is probably irradiance, which Figure 31 shows that Albuquerque is clearly higher in. 

Unglazed collectors are more sensitive to daytime temperatures, especially in combination with 

higher wind speeds. Jacksonville may be slightly better for unglazed collector heating because of 

slightly higher ambient temperatures, as seen in Figure 32, and slightly lower wind speeds, as seen in 

Figure 33. The most notable difference in wind speed is that Jacksonville has a greater frequency of 

wind speeds below 2 m/s: a total of 15%, versus only 4% and 5% for Albuquerque and Raleigh, 

respectively. 
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Figure 31. Average global horizontal irradiance from 11:00 AM to 3:00 PM for each month for 

different climates. 

 
Figure 32. Average dry bulb temperature by month between 11:00 AM and 3:00 PM for different 

climates. 
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Figure 33. Percentage of time wind speed is within each speed interval in each climate. Each speed 

listed represents the lower bound of a 1 m/s range (e.g., “7 m/s” represents all speeds between 7 m/s 

and 8 m/s). 

 

 

The cooling power of collectors is a function of ambient temperature, wind speed, and sky 

temperature. Figure 34 shows that the Albuquerque climate has the lowest night-sky temperatures, 

which gives it the greatest cooling potential. The variables of wind speed and ambient temperature 

have a compounding effect on each other because they codetermine the rate of convective heat 

transfer, which may be helpful or detrimental depending on whether ambient temperature is lower 

than collector temperature. 
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Figure 34. Average night-sky temperatures by month for each climate. 

 

 

The building loads for Raleigh, Jacksonville, and Albuquerque are displayed in Figure 35, 

Figure 36, and Figure 37, respectively. Albuquerque has the highest heating requirement while 

Jacksonville has the highest cooling requirement.  
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Figure 35. Total space heating, space cooling, and dehumidification load by month in Raleigh. 

 

 
Figure 36. Total space heating, space cooling, and dehumidification load by month in Jacksonville. 
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Figure 37. Total space heating, space cooling, and dehumidification load by month in Albuquerque. 

 

System Performance 

This section provides the annual solar fraction achieved in each climate by each type of 
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operation for monthly variations to be clearly visible. The annual trends are clear and generally as 

expected in heating mode, but there are some points that stray from the regression curve. One 

possible explanation is control error resulting from the functioning of the controls at the chosen time 
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function was fit to the data points purely on an empirical basis in order to predict the performance of 

different array sizes. 

The results show that the glazed collectors are much better for space heating, while the 

unglazed collectors are much better for space cooling. The glazed collectors only attain a modestly 

higher amount of DHW savings compared to the amount they achieve in space heating. For example, 

over one year at equal array sizes in Raleigh, the unglazed collectors produce 65% to 73% as much 
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heat for DHW consumption, but only 23% to 26% as much heat for space heating. The glazed 

collectors provide a higher total solar fraction at all array sizes in all climates, although the disparity 

seems lowest in Jacksonville and highest in Albuquerque. 

 A limitation of the results is that the cooling performance does not account for condensation 

on the collectors, which may decrease the actual performance disproportionally in the more humid 

climates of Raleigh and Jacksonville. Further investigation must also be done into the cause of the 

glazed collector performance at the points when it does not increase with collector area. A final point 

that must be emphasized is that solar fractions only represent fractions of sensible heating and cooling 

loads; humidification and dehumidification are excluded. 

Heating Savings 

Because space heating and DHW supply are provided by the same tank, it seems natural to 

first look at them in combination, as displayed in Figure 38. However, this obscures the differences in 

space heating and water heating savings. Figure 39 shows that there is a very large difference between 

the space heating potential of glazed and unglazed collectors. However, the gap is much smaller when 

only DHW potential is considered, as seen in Figure 40. Figure 40 also shows that there is significant 

scattering of simulated loads from the regression curves when DHW heating is viewed in isolation. 

This may be partly because the available heat overlaps with the different types of demands at 

different times as it accumulates in the tank. However, it would be good to compare the results to 

findings that use separate DHW and space heating tanks in order to pinpoint how the savings 

influence each other. 
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Figure 38. Total solar fraction (including space heating and DHW) for different array sizes of glazed 

and unglazed collectors. 
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Figure 39. Space heating solar fractions for different array sizes of glazed and unglazed collectors. 
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Figure 40. DHW solar fraction for different array sizes of glazed and unglazed collectors. 

 

 

Figure 41, Figure 42, and Figure 43 show the heating energy savings in Raleigh, Jacksonville, 

and Albuquerque, respectively. Some competition can be seen between space heating savings and 

DHW savings. For example, the collectors harvest the most heat annually in Albuquerque, but 

achieve a substantially smaller amount of DHW savings than in Jacksonville, which has much smaller 

space heating loads. This seems to be because the system “prefers” to direct the stored water to space 

heating when it is available.  
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Figure 41. Heating savings for 15.2 m2 of unglazed collectors in Raleigh, characterized by space 

heating savings and DHW heating savings. 

 

 
Figure 42. Heating savings for 15.2 m2 unglazed collectors in Jacksonville, characterized by space 

heating savings and DHW heating savings. 
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Figure 43. Heating savings from 15.2 m2 unglazed collectors in Albuquerque, characterized by space 

heating and DHW heating savings. 

 

 

Figure 44, Figure 45, and Figure 46 show the heating savings from glazed collectors in 

Raleigh, Jacksonville, and Albuquerque, respectively. The glazed collectors provide the most benefit 

in Albuquerque and the least benefit in Jacksonville. 



96 

 

 
Figure 44. Heating savings for 15.2 m2 of glazed collectors in Raleigh, characterized by space heating 

savings and DHW heating savings. 

 

 

 
Figure 45. Heating savings for 15.2 m2 of glazed collectors in Jacksonville, characterized by space 

heating savings and DHW heating savings. 
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Figure 46. Heating savings from 15.2 m2 of glazed collectors in Albuquerque, characterized by space 

heating and DHW heating savings. 

 

 

Space Cooling Savings 

The space cooling solar fractions from all collector array sizes are displayed in Figure 47.  

The benefit of Albuquerque’s low night sky temperature is very apparent in the unglazed collector 

solar fractions. In fact, the glazed collectors in Albuquerque achieve a higher fraction of space 

cooling than the unglazed collectors in the humid climate of Jacksonville. 
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Figure 47: Space cooling solar fractions for different array sizes of glazed and unglazed collectors. 

 

 

The monthly savings on space cooling for unglazed collectors are shown in Figure 48, Figure 

49, and Figure 50 for Raleigh, Jacksonville, and Albuquerque, respectively. The monthly savings are 

generally better in the milder months. 

 
Figure 48. Space cooling savings from 15.2 m2 of unglazed collectors in Raleigh. 
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Figure 49. Space cooling savings from 15.2 m2 unglazed collectors in Jacksonville. 

 

 
Figure 50. Space cooling savings from 15.2 m2 unglazed collectors in Albuquerque. 

 

 

The monthly savings on space cooling for glazed collectors are shown in Figure 51, Figure 

52, and Figure 53, respectively. They are consistently lower than the savings produced in the same 

climates by unglazed collectors, and are often near zero during the hottest months. 
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Figure 51. Space cooling savings from 15.2 m2 of glazed collectors in Raleigh. 

 

 
Figure 52. Space cooling savings from 15.2 m2 of glazed collectors in Jacksonville. 
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Figure 53. Space cooling savings from 15.2 m2 of glazed collectors in Albuquerque. 

 

 

Total Energy Savings 

To understand how the heating and cooling solar fractions contribute to overall energy 

savings, the total solar fraction is plotted for each array size for each type of collector in Figure 54. 

Although the unglazed collectors save a significantly greater amount of cooling in Raleigh and 

Albuquerque, the building loads in these climates are dominated by heating and allow the glazed 

collectors to easily surpass the unglazed collector performance. The Jacksonville climate is cooling-

dominated and shows the smallest absolute difference in solar fraction between glazed and unglazed 

collectors, but neither type of collector provides significant cooling at this location.  
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Figure 54. Total solar fractions at different array sizes for glazed and unglazed collectors. 
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Cost Savings Analysis 

A cost savings analysis was performed for arrays of glazed and unglazed collectors. Assumed 

energy costs and equipment efficiencies for back-up heating, cooling and domestic hot water systems 

are presented in Table 23. 

 

Table 23. Auxiliary Heating and Cooling System Efficiencies 

Equipment COP Energy Cost 

Heat Pump (Heating Mode) 2.75 $0.13 / kWh 

Heat Pump (Cooling Mode) 4.0 $0.13 / kWh 

Water Heater 1.0 $0.13 / kWh 

 

Table 24 shows how the total solar fractions vary between glazed and unglazed collectors 

based on size. The unglazed collectors provide a substantially smaller energy cost savings per square 

meter. This same cost saving comparison is demonstrated in graphical form for each climate in Figure 

55, Figure 56, and Figure 57. 

 

Table 24. Energy Cost Savings for Glazed and Unglazed Collectors at Different Array Sizes 

Area (m2) 
Raleigh 

Glazed 

Raleigh 

Unglazed 

Jacksonville 

Glazed 

Jacksonville 

Unglazed 

Albuquerque 

Glazed 

Albuquerque 

Unglazed 

3.8 $242.25 $124.59 $246.79 $143.68 $271.9 $144.34 

7.6 $316.52 $177.43 $298.42 $187.46 $379.44 $211.41 

11.4 $359.97 $208.34 $328.62 $213.06 $442.35 $250.64 

15.2 $390.79 $230.28 $350.05 $231.23 $486.99 $278.48 

19.0 $414.7 $247.29 $366.68 $245.32 $521.61 $300.07 

22.8 $434.24 $261.19 $380.26 $256.83 $549.89 $317.71 

45.6 $508.51 $314.03 $431.89 $300.6 $657.44 $384.78 
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Figure 55. Energy cost savings for glazed and unglazed arrays in Raleigh. 
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Figure 56. Energy cost savings for glazed and unglazed arrays in Jacksonville. 

 

 
Figure 57. Energy cost savings for glazed and unglazed arrays in Albuquerque. 
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Table 25. Raleigh Annual Energy Cost Savings for Glazed and Unglazed Collectors at Similar Solar 

Fractions 

Collector Type 
Space Heating 

Savings 
DHW Savings 

Space 

Cooling 

Savings 

Overall 

Savings 

Glazed 

(7.6 m2) 

Solar Fraction 0.42 0.43 0.05 0.26 

Energy Cost 

Savings 
$148.36 $154.02 $13.13 $315.51 

Unglazed 

(22.8  m2) 

Solar Fraction 0.16 0.39 0.24 0.23 

Energy Cost 

Savings 
$56.81 $139.98 $58.86 $255.65 

 

Table 26. Jacksonville Annual Energy Cost Savings for Glazed and Unglazed Collectors at Similar 

Solar Fractions  

Collector Type 
Space Heating 

Savings 
DHW Savings 

Space 

Cooling 

Savings 

Overall 

Savings 

Glazed 

(7.6 m2) 

Solar Fraction 0.62 0.61 0.05 0.28 

Energy Cost 

Savings 
$78.64 $205.05 $11.22 $294.91 

Unglazed 

(22.8 m2) 

Solar Fraction 0.33 0.54 0.17 0.28 

Energy Cost 

Savings 
$42.41 $180.48 $41.48 $264.37 

 

Table 27. Albuquerque Annual Energy Cost Savings for Glazed and Unglazed Collectors at Similar 

Solar Fractions 

Collector Type 
Space Heating 

Savings 
DHW Savings 

Space 

Cooling 

Savings 

Overall 

Savings 

Glazed 

(7.6 m2) 

Solar Fraction 0.45 0.44 0.10 0.36 

Energy Cost 

Savings 
$197.16 $156.32 $12.62 $366.10 

Unglazed 

(22.8 m2) 

Solar Fraction 0.25 0.44 0.44 0.33 

Energy Cost 

Savings 
$108.74 $158.05 $55.25 $322.04 

 

The solar fractions are approximately equal for glazed collector areas of 7.6 m2 and unglazed 

collector areas of 22.8 m2. The solar fractions at these areas range from about 25% to 35%, depending 

on climate. However, the savings on energy bills differ and are lower for the unglazed solar thermal 

system. The lower value results because a larger portion of the unglazed system’s energy savings 
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comes from cooling, which is less expensive per kWh than heating. Looking only at the material cost 

of the collectors, the unglazed collectors would have to be lower than the cost fractions of glazed 

collectors specified in Table 28 in order to be cost competitive. 

 

Table 28. Ratios of System Cost per Unit Area of Collector ($/m2) Required for Unglazed Collectors 

to Be Competitive with Glazed Collectors at Equal Energy Cost Savings 

Glazed Area 
Raleigh Cost 

Ratio 
Jacksonville Cost Ratio 

Albuquerque  

Cost Ratio 

3.8 0.21 0.2 0.27 

7.6 0.16 0.17 0.18 

11.4 0.14 0.16 0.14 

 

Factors affecting equipment costs. 

There is inherent uncertainty in determining the true representative costs of different types of 

collectors. The Energy Information Administration (EIA) provides year-by-year average costs of low 

and medium temperature collectors, but there is considerable variation between years (2012). Their 

medium-temperature category also includes evacuated tube, and presumably, flat plate collectors with 

selective coating, obscuring the cost comparison between the two types that only differ by the 

presence of glazing. The EIA’s data show that the cost ratio between low-temperature and medium-

temperature collectors is as low as 7% in 2009 to as high as 38% in 1990, with an average ratio of 

15%. Taking into account the higher cost of evacuated tube collectors that were included in the EIA’s 

medium-temperature category, the cost ratio of 20% referenced by Burch et al. (2005) seems like a 

reasonable rule of thumb. 

Conclusions 

The potential cost savings between glazed and unglazed collectors are a one-time reduction in 

expense of the installed solar thermal system. Because of the lower solar fractions achievable by the 

unglazed arrays, there is not a compelling financial reason to implement such a system on a 

residential scale when the same energy cost savings can be realized with a traditional glazed system. 
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Moreover, because the space cooling savings of the glazed system are minimal, better cost payback 

can probably be further achieved with glazed collectors by eliminating the cold water storage tank. 

However, the characterization of the energy savings among space heating, DHW, and space 

cooling does reveal potential applications where unglazed collectors may be worthy of further 

investigation. The widest performance gap between glazed and unglazed collectors occurs in space 

heating. In climates and applications that require DHW heating and space cooling (but minimal space 

heating), unglazed collectors may approach or surpass the cost-performance of glazed collectors. In 

the chosen analysis, collectors make up a relatively small portion of the overall system cost—perhaps 

only 10% to 20% when all components, labor, and overhead costs are considered. But if implemented 

in a commercial or industrial application, the collector cost may be more significant. 

There are also other considerations that may affect the choice of collector. Unglazed 

collectors do not pose much risk of boiling the glycol mixture, and may therefore require less 

maintenance and require less expensive quality of piping. The unglazed array typically must be 

larger, which will typically require more hours to install and greater expanses of piping. However, 

this could be partially offset in theory if the roof structure itself works as an unglazed collector, as in 

the experimental system of Anderson et al. (2013). 

All aspects and limitations considered, the unglazed collectors did achieve more cost-

effective energy savings in some cases compared to glazed collectors connected to an equal system. 

The system is probably not a practical means of saving energy for residences in the chosen climates, 

but the comparative performance of unglazed collectors makes a compelling case for research into 

their use in different climates or research into larger scale applications that require more substantial 

amounts of low-grade heating and cooling. 

In summary, unglazed collector systems that are approximately three times the size of glazed 

collector systems can achieve equal energy savings of approximately 35% on combined heating, 

cooling, and water consumption. The cost per square meter for unglazed systems should be 
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substantially less than for glazed systems. However, the comparative rates of return on investment 

depend on total system costs, which were not fully analyzed. 

Suggestions for Future Research 

The simulation results create several interesting questions that could be addressed by future 

research. The unglazed collectors are clearly better for DHW heating and space cooling than for space 

heating, and would be expected to achieve a higher solar fraction when space heating is not needed. 

This would be particularly true for climates with clear skies (creating low night sky temperatures) and 

a high amount of insolation. Albuquerque fits this description best, and results show it had the 

greatest potential for savings. But the modeled house was still dominated far more by space heating 

(at 33.6 GJ per year) than space cooling (at 13.8 GJ per year) in this climate. A comparison to glazed 

collectors for buildings in hotter climates or with a higher relative amount of internal gains may 

reveal greater benefits. 

The greatest weakness of unglazed collectors is their inability to capture heat in the medium 

to high temperature ranges. Their performance is highly sensitive to wind speed, but the magnitude of 

the effect is predicted differently by several different models. The uncertainty of wind’s effect could 

be lessened by an experiment that measures local wind speed in conjunction with the performance of 

unglazed collectors mounted flush to a roof, which then compares the performance to ISO test results 

and different theoretical models of convective losses. 
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Appendix A: Overhang Design 
  

The transmittance of beam radiation through the south-facing windows was analyzed during 

the summer and winter based on the angles shown Figure 58. The sun’s angles in each climate were 

determined using a sun path charting program from the University of Oregon, shown in Figure 59, 

Figure 60, and Figure 61. A 2-foot overhang was used to block most of the beam radiation during the 

summer but allow most of it during the winter.  

 



117 

 

 
Figure 58. Schematic showing method of overhang analysis (using a 2-foot overhang).  
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Figure 59. Sun chart for Raleigh. Generated from University of Oregon sun chart path program. 
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Figure 60. Sun chart for Jacksonville. Generated from University of Oregon sun path chart program. 
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Figure 61. Sun chart for Albuquerque. Generated from University of Oregon sun chart path program. 

  



121 

 

Appendix B: TRNSYS Component Issues 
 

Type 60c Tank Issue 

The behavior of Type 60c varied based on the presence or absence of other components in Simulation 

Studio that were completely unconnected from it. These components were represented as a macro in  

Figure 62 (in the lower-left corner) for compactness. The Type 60c tank ran at a lower temperature 

when the macro was present, as shown in Figure 63, than when it was deleted, as shown in Figure 64. 
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Figure 62. Simulation Studio schematic involving Type60c error. 

 

 

 

 
Figure 63. Type 60c with macro (representing third unconnected hydronic loop) present. 
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Figure 64. Type 60c tank performance with macro (representing third unconnected hydronic loop) 

deleted. 

 

Type 559 Issue 

A flaw was encountered in the Type 559 component, which the distributor attributed to a 

coding error. As sky temperature increased, the plate temperature decreased (Figure 65 and Figure 

66). 
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Figure 65. Type 559 plate temperature with 500 W irradiance, no wind, 20 degree ambient 

temperature and 0 degree sky temperature. 

 

 

 
Figure 66. Type 559 plate temperature with 500 W irradiance, no wind, 20 degree ambient 

temperature and 20 degree sky temperature. 
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Appendix C: System Sketch 
 

 
Figure 67. Hand sketch of solar thermal system. 



126 

 

Vita 
 

 Bradley Richard Painting was born in Fairlawn, Ohio. He attended public schools in Hudson, 

Ohio and graduated from Hudson High School in 2002. He then enrolled in Ohio University, where 

he was awarded a Bachelor of Science degree in Mechanical Engineering in 2007. Shortly after, he 

entered the field of sustainability by earning his LEED AP and working with consulting firms on 

sustainable building projects. He enrolled at Appalachian State University in 2013, pursuing an M.S. 

in Technology with a concentration in Renewable Energy Engineering. While at Appalachian State, 

he also collaborated on a HUD-funded study on the effects of home weatherization on indoor air 

quality, and was involved in the USDOE Race to Zero competition. 


